高等数学数列极限题型及解题方法

“高等数学数列极限题型及解题方法”相关的资料有哪些?“高等数学数列极限题型及解题方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高等数学数列极限题型及解题方法”相关范文大全或资料大全,欢迎大家分享。

1-2高等数学—数列的极限

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

第二节 数列的极限 一、概念的引入 二、数列的定义 三、数列的极限 四、数列极限的性质 五、小结

一、概念的引入1、割圆术: “割之弥细,所 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣” ——刘徽播放

正六边形的面积 A1 正十二边形的面积 A2

R

正 6 2 n 1形的面积 An

A1 , A2 , A3 , , An ,

S

2、截丈问题: “一尺之棰,日截其半,万世不竭” 1 第一天截下的杖长为 X 1 ; 2 1 1 第二天截下的杖长总和为 X 2 2 ; 2 2

1 1 1 第n天截下的杖长总和为 X n 2 n ; 2 2 2 1 Xn 1 n 1 2

二、数列的定义定义:按自然数1,2,3, 编号依次排列的一列数

x1 , x 2 , , x n ,

(1)

称为无穷数列, 简称数列. 其中的每个数称为数 列的项, x n 称为通项(一般项).数列(1)记为{ x n } .例如

2,4,8, ,2 n , ;1 1 1 1 , , , , n , ; 2 4 8 2

{2 } 1 { n} 2

n

1, 1,1, , ( 1)

n 1

, ;

{( 1)

n 1

}

1

高等数学(函数与极限)

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

目 录

一、函数与极限 ················································································································2

1、集合的概念 ···········································································································2

2、常量与变量 ···········································································································3 2、函数 ·····················································································································4 3、函数的简单性态 ································

最全大学高等数学函数、极限及连续

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

完美WORD格式

第一章 函数、极限和连续

§1.1 函数

一、 主要内容 ㈠ 函数的概念

1. 函数的定义: y=f(x), x∈D

定义域: D(f), 值域: Z(f).

y??f(x)x?D12.分段函数:

??g(x)x?D2

3.隐函数: F(x,y)= 0

4.反函数: y=f(x) → x=φ(y)=f-1

(y)

y=f-1

(x)

定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:

y=f-1(x), D(f-1)=Y, Z(f-1

)=X

且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性

1.函数的单调性: y=f(x),x∈D,x1、x2∈D 当x1<x2时,若f(x1)≤f(x2),

则称f(x)在D内单调增加( );

若f(x1)≥f(x2),

则称f(x)在D内单调减少( );

若f(x1)<f(x2),

则称f(x)在D内严格单调增加( );

若f(x1)>f(x2),

则称f(x)在D

最全大学高等数学函数、极限及连续

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

完美WORD格式

第一章 函数、极限和连续

§1.1 函数

一、 主要内容 ㈠ 函数的概念

1. 函数的定义: y=f(x), x∈D

定义域: D(f), 值域: Z(f).

y??f(x)x?D12.分段函数:

??g(x)x?D2

3.隐函数: F(x,y)= 0

4.反函数: y=f(x) → x=φ(y)=f-1

(y)

y=f-1

(x)

定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:

y=f-1(x), D(f-1)=Y, Z(f-1

)=X

且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性

1.函数的单调性: y=f(x),x∈D,x1、x2∈D 当x1<x2时,若f(x1)≤f(x2),

则称f(x)在D内单调增加( );

若f(x1)≥f(x2),

则称f(x)在D内单调减少( );

若f(x1)<f(x2),

则称f(x)在D内严格单调增加( );

若f(x1)>f(x2),

则称f(x)在D

1 高等数学方法选讲——极限与连续

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

高等数学方法选讲一、极限与连续主讲:马儒宁 2013年秋季南京航空航天大学理学院数学系

高等数学方法选讲——极限与连续数列极限的性质和相关定理

保号性与保序性(保不等式性):n→∞

有 xn> p> 0; ( 1)设 lim xn= A> 0,则对任意的 0< p< A, N> 0,当 n> N时, ( 2)若数列{ xn}收敛,且 N> 0,当 n> N时, xn≥ 0,则 lim xn≥ 0;n→∞

( 3)设 lim xn> lim yn,则 N> 0,当 n> N时,有 xn> yn;n→∞ n→∞

且 N> 0,当 n> N时,xn≥ yn,则 lim xn≥ lim yn . ( 4)若数列{ xn}和{ yn}收敛,n→∞ n→∞

由极限的不等式得到数列的不等式(如(1)(3)),条件中极限的不等式必须为严格不等式(条件是强的);由数列的不等式得到极限的不等式(如(2)(4)),无论条件中数列的不等式严格与否,结论中极限的不等式只能是非严格不等式(结论是弱的)南京航空航天大学理学院数学系:马儒宁等

高等数学方法选讲——极限与连续数列极限的性质和相关定理迫

高等数学极限习题100道

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

x2sin设limf(x)?A,求证:limf(x)?A. 求极限limx?0sinxx?x0x?x01求极限limx1?sin. 求极限lim?cosln(1?x)?coslnx? x?0xx???1x 111arctan. 求极限lim 求极限limarctanx?arcsin 2x??x??x(1?ex)xx??x1?x2x?1求极限lim. 1x?0求数列的极限lim(sinn?1?sinn) n??2?2x求极限lim 2x设lim?(x)?u0,且?(x)?u0,又limf(u)?Ax?x0u?u0试证:limf??(x)??Ax?x0 设f(x)?x?1lnx试确定实数a,b之值,使得: 当x?a时,f(x)为无穷小;当x?b时,f(x)为无穷大。x设f(x)?,问:当x趋于何值时,f(x)为无穷小。 xtan2 若limf(x)?A,limg(x)?B,且B?Ax?x0x?x0证明:存在点x0的某去心邻域,使得在该邻域内 g(x)?f(x). 设limf(x)?A,试证明:x?x0对任意给定的??0,必存在正数?,使得对适含不等式0?x1?x0??;0?x2?x0??的一切x1、x2,都有f(x2)?f(x1)??成立。已

高中数学数列复习_题型归纳_解题方法整理

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

v1.0 可编辑可修改

1 1 数列

典型例题分析

【题型1】 等差数列与等比数列的联系 例1 (2010陕西文16)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数

列.(Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{2an }

的前n 项和S n .

解:(Ⅰ)由题设知公差d ≠0,

由a 1=1,a 1,a 3,a 9成等比数列得121d +

=1812d d

++, 解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n.

(Ⅱ)由(Ⅰ)知2m

a =2n ,由等比数列前n 项和

公式得 S m =2+22+23+…+2n =2(12)

12

n --=2n+1-2. 小结与拓展:数列{}n a 是等差数列,则数列}{n a a 是

等比数列,公比为d

a ,其中a 是常数,d 是{}n

a 的

v1.0 可编辑可修改

公差。(a>0且a≠1).

【题型2】与“前n项和Sn与通项an”、常

用求通项公式的结合

例 2 已知数列{a n}的前三项与数列{b n}的前

三项对应相同,且a1+2a2+22a3+…+2n-1a n=

8n对任意的n∈N*都成立,数列{b n+1-b n}是等

差数列.求数列{a

高等数学公式(极限与导数)

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

高等数学中有关极限、无穷小和导数的公式

两个重要极限

第一个重要极限:lim

推论:lim

第二个重要极限:lim(1 )x e

x

sinx

1

x 0x

tanxarcsinxarctanx 1,lim 1,lim 1

x 0x 0x 0xxx

1

x

1其他形式:lim(1 n e,n n

推论:lim

lim 1 x e

x 0

1x

loga(1 x)1ln(1 x)

lim 1

x 0x 0xlnax

ax 1ex 1lim lna lim 1 x 0x 0xx

高等数学中有关极限、无穷小和导数的公式

等价无穷小

当x 1时,lnx x 1(这个等价无穷小很有用。) 证明:lnx ln[1 (x 1)] x 1( x 1 0)

高等数学中有关极限、无穷小和导数的公式

导 数

高等数学中有关极限、无穷小和导数的公式

高阶导数

函数f(x)在点x0注 如果函数f(x)在点x0处的二阶可导,则函数f(x)在点x0的某个邻域内必须有连续的导数

f (x)。

两个函数乘积的高阶导数(莱布尼茨公式):

uv

n

k n k k

Cnuv k 0

n

(uv)

(n)

n(n 1)...(n k 1)(n k)(k)

v

k!k 0

n

高等数学中有关极限、无穷小和导数的公式

求导法则和方法

经济数学1(高等数学,极限与连续)

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

经济数学

前言 一、“高等数学”的学科定位

“高等数学”,是以极限论为工具研究变 量和变量关系的学科,又称为微积分,在数学专业课中又称为“数学分析”。

研究的对象是函数,基础是实数域,运用分析的工具是极限。

以下我们根据课程的特点和内容从不同角度对其进行说明。

1、高等数学 初等数学,

2、高等数学又称为“微积分”,其主要内容是微分学和积分学两部分。而它们的基础是函数与极限,我们再根据其对象是一元函数和多元函数将其分为一元微积分和多元微积分。

3、同样是微积分,还有层次的高低问题。 4、在内容的系统上,其主线是运用极限论

工具对函数的各特性进行讨论。这里在内容体系展开上就有一个认识上的矛盾。因为极限论从认识的角度看要比函数的微积分难得多。若一开始就深入的徘徊在极限理论之中,必然偏离我们高数的学习目的。为了解决这个矛盾,我们尽量地简化了极限论的分析,只是罗列了一些要用的必需结论(这也是与数学分析的主要区别之一)。但是对它的简单化将使我们在运用极限这个工具时,感到有点把握不住,这是很正常的。希望大家一定要正确对待这一难关。我们的处理是在后继内容的一些具体问题中去逐步地完善对极限的认识,可能到后面的总结时,才能较好地体会和归纳出它的实

最全大学高等数学函数、极限和连续

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

第一章 函数、极限和连续

§1.1 函数

一、 主要内容 ㈠ 函数的概念

1. 函数的定义: y=f(x), x∈D

定义域: D(f), 值域: Z(f).

y??f(x)x?D2.分段函数:

?1?g(x)x?D2

3.隐函数: F(x,y)= 0

4.反函数: y=f(x) → x=φ(y)=f-1

(y)

y=f-1

(x)

定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:

y=f-1(x), D(f-1)=Y, Z(f-1

)=X

且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性

1.函数的单调性: y=f(x),x∈D,x1、x2∈D 当x1<x2时,若f(x1)≤f(x2),

则称f(x)在D内单调增加( );

若f(x1)≥f(x2),

则称f(x)在D内单调减少( );

若f(x1)<f(x2),

则称f(x)在D内严格单调增加( );

若f(x1)>f(x2),

则称f(x)在D内严格单调减少( )。

2.函数的奇偶性:D(f)关于原点对称 偶函数:f