初中数学有理数的试题
“初中数学有理数的试题”相关的资料有哪些?“初中数学有理数的试题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“初中数学有理数的试题”相关范文大全或资料大全,欢迎大家分享。
初中数学第1章有理数
明镜学院讲义 讲课人:邓威
第一章 有理数
测试1 正数和负数
学习要求
了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量.
课堂学习检测
一、判断题(正确的在括号内画“√”,错误的画“×”)
( )1.某仓库运出30吨货记作-30吨,则运进20吨货记作+20吨. ( )2.节约4吨水与浪费4吨水是一对具有相反意义的量.
( )3.身高增长1.2cm和体重减轻1.2kg是一对具有相反意义的量. ( )4.在小学学过的数前面添上“-”号,得到的就是负数. 二、填空题
5.学校在大桥东面9千米处,那么大桥在学校______面-9千米处.
6.如果以每月生产180个零件为准,超过的零件数记作正数,不足的零件数记作负数,那么1月生产160个零件记作______个,2月生产200个零件记作______个.
7.甲冷库的温度为-6℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是______. 8.______既不是正数,也不是负数;它______整数,______有理数(填“是”或“不是”). 9.整数可以看作分母为1的_
有理数2 - -有理数运算
第3——4课时 有理数的运算
一、知识梳理
有理数的加、减法 1.有理数加、减法的定义
(1)把两个数合成一个有理数的运算,叫做有理数的加法。
(2)已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。 2.有理数加、减法法则(重点)
(1)同号两数相加,取相同的符号,并把绝对值相加
(同号相加,符号不变,绝对值相加)
(2)异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。(异号相加,符号同大,绝对值相减)
(3)互为相反数的两数相加得零 (4)一个数同零相加,仍得这个数 (5)减去一个数,等于加上这个数的相反数 3.有理数加法的运算律(难点)
加法交换律:两个数相加,交换加数的位置,和不变。即a?b?b?a 加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和 不变。即(a?b)?c?a?(b?c) 4.有理数加减混合运算的方法和步骤(难点)
第一步:运用减法法则将有理数混合运算中的减法转化为加法。 第二步:运用加法法则、加法交换律、加法结合律进行简便运算 有理数的乘、除法
1.有理数的乘、除法法则(重点)
(1)两数相乘,同号得正,异号得负,并把绝对值相乘
1.4.1有理数的乘法试题
人教七年级上册第1.4.1 有理数的乘法 测练
1.如果ab=0,那么一定有( )
A.a=b=0 B.a=0 C.b=0 D.a,b至少有一个为0 2.已知abc>0,a>c,ac<0,下列结论正确的是( ) A.a<0,b<0,c>0 B.a>0,b>0,c<0
C.a>0,b<0,c<0 D.a<0,b>0,c>0
3.已知a、b、c三个数在数轴是对应的点如图所示,则在下列式子中正确的是( ) A.ac>ab B.ab<bc C.cb<ab D.c+b>a+b
4.三个数的积是正数,那么三个数中负数的个数是___. 5.若干个有理数相乘,其积是负数,则负因数的个数是___.
6.若ab>0,b<0,则a___0;若-abc>0,b、c异号,则a___0.
7.当a=-
11,b=,c=-3时,试计算代数式(a-b)(a-c)的值. 23
8.|a|=6,|b|=3,求ab的值.
9.讲完“有理数的乘法”后,老师在课堂上出了下面一道计算题:71
15×(-8). 16不一会儿,不少同学算出了答案,老师把班上同学的解题归类写到黑板上:
有理数
北师大版七年级上册《第2章 有理数及其运算》
2014年单元测试卷
菁优网
www.jyeoo.com
北师大版七年级上册《第2章 有理数及其运算》
2014年单元测试卷
一、选择题(每小题3分,共30分) 1.(3分)(2014?福州)﹣5的相反数是( ) 5 A.﹣5 B. C. D. ﹣ 2.(3分)(2014?成都)在﹣2,﹣1,0,2这四个数中,最大的数是( ) 0 A.﹣2 B. ﹣1 C. 3.(3分)下列运算正确的是( ) 4 A.B. ﹣(﹣2)=2 C. ﹣2=16 3(﹣)=﹣l 4.(3分)计算﹣×2+×6的值是( ) 0 A. B. C. 2
2
2 D. D. (﹣2)=8 3D. 5.(3分)如果a的倒数是﹣1,那么a等于( ) 1 2014 A.B. ﹣1 C. D. ﹣2014 6.(3分)下列说法中正确的有( ) ①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积绝对值,等于这两个有理数的绝对值的积. A.1个 B. 2个 C. 3个 D. 4个 7.(3分)气象部门测定,高度每增加1
有理数的除法
篇一:有理数除法练习题
2014/9/6
33
(1)(?)?(?)
( 2)(?2)?
3
105
(3)(?323)?(?512)
(5)(?3)????11???(?21
4?2?4)
(7)(?31
4)?(?13
)?8?4
2
(9)
5?(?2283
5)?21?(?14
)?0.75
5
(4)(?3.3)?(?31
3
)
(6)112???5?
??3??
?(?0.25)
(8)(?212)?(?5)?(?31
3
)
113(10)?(2?72?4 3
1
(1)(?15)?(?3)(2)(?12)?(?)
4
(3)(?0.75)?0.25
1
(4)(?12)?(?)?(?100)
12
73
(5)?3.5??(?)
84
1
(6)?6?(?4)?(?1)
5
33(7)(?51)?(?34)?(?)(8)-3.5÷7×(-4) 88
二、 若a,b互为相反数,c,d互为倒数,m的倒数是2,
课外拓展,推广法则
求
a?b?cd
的值.m
1.若a?0,b?0,则____0 若a?0,b?0,则____02.
若a?0,b?0,则____0 若a?0,
ab
ab
aba
b?0,则____0
b
一.填空
(1)-的相反数为 ,倒数为 。 (2)若一个数的相反数为-1,则这个数为 ,
这个数的倒数为 。 (3
有理数的乘方
§2.5有理数的乘方(一)
目标:1、了解通过实际例子经历乘方概念的产生过程。
2、理解乘方的有关概念。
2、掌握乘方与幂的表示法,能进行简单的乘方运算 重点:乘方概念及计算 流程:乘方概念→乘方计算 教学过程 1、生活实例引入
师:某种细胞每过30分钟便由一个分裂成2个,经过5小时,这种细胞由1个能分裂成多少个?你能算吗?
1个细胞30分钟分裂成2个,1小时后能分裂成2×2个,1.5小时后能分裂成2×2×2个,2小时后能分裂成2×2×2×2个,2.5小时、3小时、3.5小时??依次写出,写法的麻烦为后面写成指数形式做铺垫。 师:5小时共要分裂10次,分裂后的细胞个数为
2×2×2×2×??×2=1024
10个2
师:为了表示简便,我们把2×2×2×2×??×2记为2。
10个2
如果对于几个相同的因数a相乘
a×a×a×a×??×a我们也将之记为a。
n个a n
10
板书:
求n个相同因数a的乘积的运算叫做乘方(Power),乘方的结果叫做幂(Power),a叫做底数(base number),n叫做指数(exponent)
把a读做a 的n次方。
n
指数
底数
有理数的乘法
篇一:初一数学有理数的乘法教案
有理数的乘法
一、教学目标
1、 知识与技能:掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、过程与方法:经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、 情感态度与价值观:通过学生自己探索出法则,让学生获得成功的喜悦。
二、教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
三、教学过程
一、导课:
计算:5×3 解:5×3=15 27277? 解:?? 34346
0 ?11 解:0??0 44
我们已经熟悉正数及0的乘法运算,引入负数以后,怎样进行有理数的乘法运算呢?
怎样计算(1)??4????8?
(2)??5??6
二、问题探究:
一只蜗牛沿直线L爬行,它现在的位置恰好在L上的点O。
(1) 如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟后它在什么位置?
(?2)?(?3)??6
(2) 如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟后它在什么位置?
( -2 ) ? ( +3 )= - 6
(3) 如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟前它在什么位置?
( +2 ) ? ( -3 )= - 6
(4) 如果蜗牛一直以
2.2有理数的乘法 - 有理数的除法(一) - 经典题库
有理数的乘法与除法(一)
(一)课堂学习检测
一、填空题
(1)有理数的乘法法则是两数相乘,同号得_______、异号得_______,并把_______相乘。零乘以任何数都得_______。
(2)几个不等于零的数相乘时,积的符号由_______的个数决定,当_______有_______数个时积为负;当_______有_______数个时积为正。
(3)在有理数范围,乘法运算律仍适用,即ab=_______,(ab)c=a(_______),a(b+c-d)=_______。
二、选择题
(1)下列计算正确的是()。
11133912?1 (B)(?8)?21716(C)(?7)?(?)??6
771(D)3?(?)??1
3(A)(?1)?(?1)?1
(2)两个有理数的积是0,那么这两个有理数()。 (A)至少有一个是零 (B)都是零 (C)互为倒数
(D)以上结论都不对 (3)?41?(10?1?0.05)??8?1?0.04,这个运算应用了()。 54(A)加法结合律
(B)乘法结合律 (C)乘法交换律 (D)分配律
(4)若ab>0,a+b<0,则a、b这两个数()。 (A)都是正数 (B)都是负数 (C)一正一负 (D)不能确定
三、计算题 (1)①
34?(?)?_______; 45②(?)?(?4)?_______
1.2.1有理数
1.2.1有理数
一. 教学目标
知识与技能:学习正数、负数、有理数的概念,会用正、负数表示具有相反意义的量,
能正确地将有理数进行分类.
过程与方法:通过观察节前图,分析、讨论出用正、负数表示具有相反意义的量的方法,
了解有理数的产生的必要性、合理性.
情感与态度:要求学生树立勇于探索、积极实践的学习态度,通过合作交流培养协作精
神,撰写小论文进一步了解数的发展历史.
二. 教学重点和难点
教学重点:正数、负数的概念对有理数的建立起关键性的作用,是本节课重点.
教学难点:正数、负数的概念的建立是学生从来未经历过的数学的抽象过程,是本节的
难点.
三. 教学过程
1. 创设情景,引入新课
同学们你们还记不记上一节课老师请你们举了一些生活当中的例子,这些例子用自然数,分数,小数是不能解决的,当时我们都举了哪些例子啊?
我记得同学们好象讲到了温度计当中零下的温度,还有地下室,还有欠银行的钱如何表示,还有路标向东向西,扣分如何表示等等等等.那么温度的零上、零下,路程的向东、向西,钱的收入和支出,得分和扣分这些量是不是相互对立的?因此我们称它们为具有相反意义的量,那么如何把这些具有相反意义的量表示出来呢?
2.合作探索,寻求新知
师:为了表示具有
有理数导学案 人教版数学
有理数导学案 人教版数学
教学内容:教材P9-P10
第一章 有理数 1.2.1有理数
学习目标:1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2、了解分类的标准与分类结果的相关性,初步了解集合的含义;
3、体验分类是数学上的常用处理问题的方法。
一、自主预习与互动学习:1、阅读教材:P7
2、请各组在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。
问题1:观察黑板上的9个数,并给它们进行分类。
问题2:有理数可分为正数和负数两大类,对吗?为什么?
问题3、根据有理数定义分类完成并教材P10练习;
3、下面的说法中,正确的个数是( )
(1)0是整数;(2)-2是负分数;(3)3.2不是正数;(4)自然数一定是非负数;(5)负数一定是负有理数。A.1个 B.2个 C.3个 D.4个
4、在有理数:1,-7,0.3,0,81,-15中,自然数是 负数
第 1 页
是 分数是 负整数是 正分数是 非负整数是 。
5、下列各数不是有理数的是( ) A.-3.14 B.0 C. D.
6、整数: 、 、 统称为整数;0和正整数都是
分数:正分数和 统称为分数;
有理数: 和 统称为有理数;
第 2 页