历年高考数学导数压轴题
“历年高考数学导数压轴题”相关的资料有哪些?“历年高考数学导数压轴题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“历年高考数学导数压轴题”相关范文大全或资料大全,欢迎大家分享。
2014年高考导数压轴题汇编
20.(本小题满分13分) 解:
3a?x?a?1-,当x??2a,或x?a时,是单调递增的。??x?2ax?2aa?0,f(x)??
?x?a3a??-1?,当?2a?x?a时,是单调递减的。?x?2a?x?2a(Ⅰ)由上知,当a?4时,f(x)在x?[0,4]上单调递减,其最大值为f(0)?-1?3a?1
2a2 当a?4时,f(x)在[0,a]上单调递减,在[a,4]上单调递增。令f(4)?1-3a1?f(0)?,解得:a?(1,4],即当a?(1,4]时,g(a)的最大值为f(0); 4?2a2当a?(0,1]时,g(a)的最大值为f(4)
3a?1-,当a?(0,1]时??4?2a 综上,g(a)???1,当a?(1,??)时??2(II)由前知,y=f(x)的图像是由两段反比例函数的图像组成的.因此,若在图像上存在两点P(x1,y1),Q(x2,y2)满足题目要求,则P,Q分别在两个图像上,且f'(x1)?f'(x2)??1.
?3a?(x?2a)2,当x??2a,或x?a时? ??3af'(x)??,当?2a?x?a时2(x?2a)??0?a?4??不妨设
3a?3a???1,x1?(0,a),x2?(a,8]?3a?(x1?2a
浙江历年高考真题导数
1. (07浙江高考)已知f?x??x2?1?x2?kx. (I)若k=2,求方程f?x??0的解;
(II)若关于x的方程f?x??0在(0,2)上有两个解x1,x2,求k的取值范围,并证明
2.(08浙江高考)已知a是实数,函数f(x)?x211??4 x1x2?x?a?.
(Ⅰ)若f1(1)=3,求a的值及曲线y?f(x)在点(1,f(1))处的切线 方程;
(Ⅱ)求f(x)在区间[0,2]上的最大值。
3.(09浙江高考)已知函数f(x)?x?(1?a)x?a(a?2)x?b(a,b?R). (I)若函数f(x)的图象过原点,且在原点处的切线斜率是?3,求a,b的值; (II)若函数f(x)在区间(?1,1)上不单调,求a的取值范围. ...
32
4.(10浙江高考)已知函数f(x)?(x?a)(a-b)(a,b?R,a
22f(x)?alnx?x?ax,a?0 5.(11浙江高考)设函数
2(I)求f(x)的单调区间
2x??1,e?e?1?f(x)?ea(II)求所有实数,使对恒成立。
注:e为自然对数的底数。
6.(12浙江高考)已知a?R,函数f(x)?4x2?2ax
浙江历年高考真题导数
1. (07浙江高考)已知f?x??x2?1?x2?kx. (I)若k=2,求方程f?x??0的解;
(II)若关于x的方程f?x??0在(0,2)上有两个解x1,x2,求k的取值范围,并证明
2.(08浙江高考)已知a是实数,函数f(x)?x211??4 x1x2?x?a?.
(Ⅰ)若f1(1)=3,求a的值及曲线y?f(x)在点(1,f(1))处的切线 方程;
(Ⅱ)求f(x)在区间[0,2]上的最大值。
3.(09浙江高考)已知函数f(x)?x?(1?a)x?a(a?2)x?b(a,b?R). (I)若函数f(x)的图象过原点,且在原点处的切线斜率是?3,求a,b的值; (II)若函数f(x)在区间(?1,1)上不单调,求a的取值范围. ...
32
4.(10浙江高考)已知函数f(x)?(x?a)(a-b)(a,b?R,a
22f(x)?alnx?x?ax,a?0 5.(11浙江高考)设函数
2(I)求f(x)的单调区间
2x??1,e?e?1?f(x)?ea(II)求所有实数,使对恒成立。
注:e为自然对数的底数。
6.(12浙江高考)已知a?R,函数f(x)?4x2?2ax
2014高考导数压轴题-导数应用题
导数应用题
1. 某工厂生产某种儿童玩具,每件玩具的成本为30元,并且每件玩具的加工费为t元(其中t为常数,且2≤t≤5),设该工厂每件玩具的出厂价为x元(35≤x≤41),根据市场调查,日销售量与ex(e为自然对数的底数)成反比例,当每件玩具的出厂价为40元时,日销售量为10件.
(1)求该工厂的日利润y(元)与每件玩具的出厂价x元的函数关系式;
(2)当每件玩具的日售价为多少元时,该工厂的利润y最大,并求y的最大值.
40解:(1)设日销售量为,则=10,∴k=10 e.则日销售量为,
.∴y=,其中35≤x≤41. ∴日利润y=(x-30-t)·
(2)y′=,令y′=0得x=31+t.
①当2≤t≤4时,33≤31+t≤35.∴当35≤x≤41时,y′≤0.
5∴当x=35时,y取最大值,最大值为10(5-t)e.
35<t+31≤36 ,t+31]上单调递增,②当4<t≤5时,函数y在[35,在[t+31,41]上单调递减.
9t∴当x=t+31时,y取最大值10e-.
∴当2≤t≤4时,x=35时,日利润最大值为10(5-t)e5元.
9t当4<t≤5时,x=31+t时,日利润最大值为10e-元.
2. 如图,ABCD是正方形空
备战2012年高考压轴题(圆锥曲线与导数)
备战2013年高考压轴题集(圆锥曲线部分)
1.(12分)已知抛物线、椭圆和双曲线都经过点M?1,2?,它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.
(Ⅰ)求这三条曲线的方程;
(Ⅱ)已知动直线l过点P?3,0?,交抛物线于A,B两点,是否存在垂直于x轴的直线l?被以AP为直径的圆截得的弦长为定值?若存在,求出l?的方程;若不存在,说明理由.
2.(本小题满分12分)将圆O: x?y?4上各点的纵坐标变为原来的一半 (横坐标不变), 得到曲线C. (1) 求C的方程;
(2) 设O为坐标原点, 过点F(3, 0)的直线l与C交于A、B两点, N为线段AB的中点,延长线段ON交C于点E.
求证: OE?2ON的充要条件是|AB| ?3.
3.(12分)E、F是椭圆x?2y?4的左、右焦点,l是椭圆的右准线,点P?l,过点
22
22E的直线交椭圆于A、B两点.
(1) 当AE?AF时,求?AEF的面积; (2) 当AB?3时,求AF?BF的大小; (3) 求?EPF的最大值.
BEOFyAPMx1
4.(本小题满分14分)
x2y2设双曲线2?2=1( a > 0, b > 0 )
2012届高考数学压轴题预测导数(共6套)
2012届高考数学压轴题预测
专题六 导 数
1. 设函数f(x)?ln(x?a)?x2,(1)若当x??1时,f(x)取得极值,求a的值,并讨论f(x)的单调性;(2)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于ln解析:(1)f?(x)?e. 213?2x,依题意有f?(?1)?0,故a?. x?a22x2?3x?1(2x?1)(x?1)?从而f?(x)?. 33x?x?223?3?f(x)的定义域为??,?∞?,当??x??1时,f?(x)?0;
2?2?当?1?x??11时,f?(x)?0;当x??时,f?(x)?0. 22从而,f(x)分别在区间??,?1?,?∞?单调增加,在区间??1,???,?3?2??1??2????1??单调减少. 2?2x2?2ax?1?∞),f?(x)?(2)f(x)的定义域为(?a,.
x?a方程2x?2ax?1?0的判别式??4a?8. ①若??0,即?2?a?222,在f(x)的定义域内f?(x)?0,故f(x)的极值.
(2x?1)2②若??0,则a?2或a??2.若a?2,x?(?2. ,∞?),f?(x)?x?2??2??22?????,?∞?当x??时,f(x)?0,当x
高考导数压轴题解答
整理:beijingdaxue gaojiejack ◇导数专题
目 录
一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)
(一)作差证明不等式
(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式
四、不等式恒成立求字母范围 (51)
(一)恒成立之最值的直接应用 (二)恒成立之分离常数
(三)恒成立之讨论字母范围
五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)
七、导数结合三角函数 (85)
书中常用结论(zhongdianzhangwo) ⑴sinx?x,x?(0,?),变形即为点连线斜率小于1. ⑵ex?x?1 ⑶x?ln(x?1) ⑷lnx?x?ex,x?0.
sinx?1,其几何意义为y?sinx,x?(0,?)上的的点与原x一、导数单调性、极值、最值的直接应用
1. (切线)设函数f(x)?x2?a.
(1)当a?1时,求函数g(x)?xf(x)在区间[0,1]上的最小值; (2)当a?0时,曲线y?f(x)在点P(x1,f(x1))(x1?a)处的切线为l,l与x轴交于点A(x2,0)求证:x1?x2?a.
1
解:(1)a?1时,g(x
高考导数压轴题解答
整理:beijingdaxue gaojiejack ◇导数专题
目 录
一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)
(一)作差证明不等式
(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式
四、不等式恒成立求字母范围 (51)
(一)恒成立之最值的直接应用 (二)恒成立之分离常数
(三)恒成立之讨论字母范围
五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)
七、导数结合三角函数 (85)
书中常用结论(zhongdianzhangwo) ⑴sinx?x,x?(0,?),变形即为点连线斜率小于1. ⑵ex?x?1 ⑶x?ln(x?1) ⑷lnx?x?ex,x?0.
sinx?1,其几何意义为y?sinx,x?(0,?)上的的点与原x一、导数单调性、极值、最值的直接应用
1. (切线)设函数f(x)?x2?a.
(1)当a?1时,求函数g(x)?xf(x)在区间[0,1]上的最小值; (2)当a?0时,曲线y?f(x)在点P(x1,f(x1))(x1?a)处的切线为l,l与x轴交于点A(x2,0)求证:x1?x2?a.
1
解:(1)a?1时,g(x
2010年高考数学压轴题系列训练二
书利华教育网www.shulihua.net您的教育资源库
2010年高考数学压轴题系列二
1. (本小题满分12分)
已知常数a > 0, n为正整数,f n ( x ) = x n – ( x + a)n ( x > 0 )是关于x的函数. (1) 判定函数f n ( x )的单调性,并证明你的结论. (2) 对任意n ? a , 证明f `n + 1 ( n + 1 ) < ( n + 1 )fn`(n)
2. (本小题满分12分)
已知:y = f (x) 定义域为[–1,1],且满足:f (–1) = f (1) = 0 ,对任意u ,v?[–1,1],都有|f (u) – f (v) | ≤ | u –v | .
(1) 判断函数p ( x ) = x2 – 1 是否满足题设条件? (2) 判断函数g(x)=?3. (本小题满分14分)
已知点P ( t , y )在函数f ( x ) = (1) 求证:| ac | ? 4;
(2) 求证:在(–1,+∞)上f ( x )单调递增. (3) (仅理科做)求证:f ( | a | ) + f ( | c | ) > 1.
4.(本小题满分15分)
设定义在R上的函数f(x)?a0x4?a1x3?a2x2?a3x?a
高考数学压轴题跟踪
1.已知数列{an}满足a1?1,a2?1,且[3?(?1)n]an?2?2an?2[(?1)n?1], 2(n=1,2,3,?).(1)求a3,a4,a5,a6的值及数列{an}的通项公式; (2)令bn?a2n?1?a2n,记数列{bn}的前n项的和为Tn,求证:Tn<3.
11,a5?5,a6? 48*当n为奇数时,不妨设n=2m1,m?N,则a2m?1?a2m?1?2, {a2m?1}为等差数列,
解:(1)分别令n=1,2,3,4可求得a3?3,a4?a2m?1=1+2(m1)=2m1, 即an?n。
当n为偶数时,设n=2m,m?N,则2a2m?2?a2m?0, {a2m}为等比数列,
*1n11m?11a2m??()?m,故an?()2,
2222?n(n?2m?1m?N*)1?综上所述,an??1n (2)bn?a2n?1?a2n?(2n?1)?n
*2?()2(n?2mm?N)?21111Tn?1??3?2?5?3???(2n?1)?n
222211111Tn?1?2?3?3???(2n?3)?n?(2n?1)?n?1 22222111111两式相减:Tn??2(2?3??