求解积分方程的方法

“求解积分方程的方法”相关的资料有哪些?“求解积分方程的方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“求解积分方程的方法”相关范文大全或资料大全,欢迎大家分享。

关于积分方程的求解问题

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

是好的写作材料

年第

国土资源高等职业教育研究

关于积分方程的求解问题王东霞

李富强

平顶山工学院

含有变上下限积分的方程称为积分方程,,,

甲、

,

这类方程的求解间题是一种常见的题型也是考研的常考内容但在大多数《教材中没有进高等数学》

即,…二

小丁气,,

气‘,

,

,

,

‘,

,

,

行深人地讨论决。,

学生遇到此类问题时感到难以解,,

是方程

的连续解证毕,,

为此本文针对这类方程的求解问题进行讨论。,,

命题

连续

可导函数

是含

供大家参考

参变量的积分方程

由于积分与微分是两种互逆运算因此我们可以考虑把积分方程转化为微分方程进行求解其理,

丸的解的充要条件是二‘

一,

是微分方程勺二

论依据由以下命题给出

命题二

,

连续,

,

可导函数,

满足初始条件证明必要性,

的解

是积分方程

是方程一‘

的解则,

气’,

,

‘二

丁瓦,

‘。

对一

耘二

的连续解的充分必要条件是

杯是微分方程

变量代换令

,

则一

五一

礼勒二

二、

满足初始条件杯勒证明必要性

的解

那么的连续…

,

石、…,

是方程

解则,

连续

,

石丁、可导。

可导二,

,‘

了气,

,

,

,‘

可导故

对,,

式两边求导得二

,

连续可导故甲,,

气。

,

可导

又。

可导 ,

是方程解,

满足初始条件《扔是方程一

的拓

式两边求

关于积分方程的求解问题

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

是好的写作材料

年第

国土资源高等职业教育研究

关于积分方程的求解问题王东霞

李富强

平顶山工学院

含有变上下限积分的方程称为积分方程,,,

甲、

,

这类方程的求解间题是一种常见的题型也是考研的常考内容但在大多数《教材中没有进高等数学》

即,…二

小丁气,,

气‘,

,

,

,

‘,

,

,

行深人地讨论决。,

学生遇到此类问题时感到难以解,,

是方程

的连续解证毕,,

为此本文针对这类方程的求解问题进行讨论。,,

命题

连续

可导函数

是含

供大家参考

参变量的积分方程

由于积分与微分是两种互逆运算因此我们可以考虑把积分方程转化为微分方程进行求解其理,

丸的解的充要条件是二‘

一,

是微分方程勺二

论依据由以下命题给出

命题二

,

连续,

,

可导函数,

满足初始条件证明必要性,

的解

是积分方程

是方程一‘

的解则,

气’,

,

‘二

丁瓦,

‘。

对一

耘二

的连续解的充分必要条件是

杯是微分方程

变量代换令

,

则一

五一

礼勒二

二、

满足初始条件杯勒证明必要性

的解

那么的连续…

,

石、…,

是方程

解则,

连续

,

石丁、可导。

可导二,

,‘

了气,

,

,

,‘

可导故

对,,

式两边求导得二

,

连续可导故甲,,

气。

,

可导

又。

可导 ,

是方程解,

满足初始条件《扔是方程一

的拓

式两边求

关于求解三重积分的方法

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

根据给出的封闭曲面的形式判断积分区间,化三重积分为三次积分。

科技信息

高校理科研究

关孑求船三重积分帕方法襄樊学院数计学院陶爽卢方芳[摘要]根据给出的封闭曲面的形式判断积分区间,化三重积分为三次积分。 [关键词】积分区域最大投影柱坐标球面坐标 1出的曲形如 z f x )=, .给面=1,, x ) ( yz Y令£ )如 y, y= )得到一个关于 xy,的方程,是封闭曲面围成的区域在 X Y平面上的最大投影,也是 x满足的范围,然后根据所得到的 xy O, y, 的关系判断 f 2 l的大小。, f 例 1化三重积分 f,z xy z ( Y ) dd为三次积分, x,d积分区域 Q是由曲面 z x 22 z2 X围成的闭区域。= Z y及=一2+ 解根据 x 2 2 x有 x 1因为得到的是最大投影,以 xy 2 y一 y,+所,满足的是 x y≤1 22,+根据该式可知≤2 X则一2,,

故闭区域在平面上的最大投影区域 D (, I+2】据 y得=(y x y≤1根 x)z, 2≤1出、 =[≥z z 2≥x y而根据所给的曲面方程形式,+,可以使用柱坐标变换,

令{p S 0 p+ f C≤<∞ X O= f ≥≥ 22~== z xy

关于求解三重积分的方法

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

根据给出的封闭曲面的形式判断积分区间,化三重积分为三次积分。

科技信息

高校理科研究

关孑求船三重积分帕方法襄樊学院数计学院陶爽卢方芳[摘要]根据给出的封闭曲面的形式判断积分区间,化三重积分为三次积分。 [关键词】积分区域最大投影柱坐标球面坐标 1出的曲形如 z f x )=, .给面=1,, x ) ( yz Y令£ )如 y, y= )得到一个关于 xy,的方程,是封闭曲面围成的区域在 X Y平面上的最大投影,也是 x满足的范围,然后根据所得到的 xy O, y, 的关系判断 f 2 l的大小。, f 例 1化三重积分 f,z xy z ( Y ) dd为三次积分, x,d积分区域 Q是由曲面 z x 22 z2 X围成的闭区域。= Z y及=一2+ 解根据 x 2 2 x有 x 1因为得到的是最大投影,以 xy 2 y一 y,+所,满足的是 x y≤1 22,+根据该式可知≤2 X则一2,,

故闭区域在平面上的最大投影区域 D (, I+2】据 y得=(y x y≤1根 x)z, 2≤1出、 =[≥z z 2≥x y而根据所给的曲面方程形式,+,可以使用柱坐标变换,

令{p S 0 p+ f C≤<∞ X O= f ≥≥ 22~== z xy

矩阵方程的求解问题

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

矩阵的知识

维普资讯

第 l 9卷第 2期

邯郸职业技术学院学报

2O 06年 6月

矩阵方程的求解问题郑丽0 60 ) 50 1 (邯郸职业技术学院基础部,河北邯郸

要:主要考察了矩阵方程的求解问题,出了一般矩阵方程当系数矩阵满足不同条件时的两种给

求解方法。

关键词:阵;阵的逆;阵方程矩矩矩中图分类号: 2 16 0 4 .文献标识码: A文章编号:0 9 4 2 2 o ) 2 0 9 3 10—5 6 (0 6 0—0 8—0—。..。.. ... ...L。. ..。.

矩阵是线性代数中的最重要的部分。贯穿于线性代数的始终,以说线性代数就是矩阵的代数,它可 矩阵是处理高等数学很多问题的有力工具。阵方程是矩阵运算的一部分,矩这里我们主要讨论如何求解矩阵方程的问题。握简单的矩阵方程的求法,于求解复杂的矩阵方程有很大帮助。掌对 简单的矩阵方程有三种基本形式:= C,A= C,X= C。 X AB如果这里的 A、是可逆方阵,都则求解时需要找出矩阵的逆,注意左乘和右乘的区别。它们的解分别为:: A-C,= 1 ~,: A 1 -~。 例如,方程 A= C,求解 C先考察 A是否可逆。如果 A可逆时,程两边同时左乘 A得 A A=方~, A—

欧拉积分在求解定积分中的应用

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

2009年9月第23卷第3期

阴山学刊

YINSHANACADEMICJOURNAL

Sep.2009V01.23

No.3

欧拉积分在求解定积分中的应用

(包头师范学院学报编辑部,内蒙古包头014030)

摘要:本文叙述了欧拉积分的定义及相关性质,着重通过举例说明欧拉积分在实际计算中的应用。关键词:欧拉积分;定义;性质;应用

中图分类号:0172.2文献标识码:A文章编号:1004—1869(2009)03-0022—03

求解定积分是学习高等数学的一个重要内容,也是解决数学问题的一个基本技能。求解定积分的

∞)内闭一致收敛。F(d)在区间(0,+∞)连续,求导在积分号下进行:

方法一般来说是先求出原函数,然后再根据牛顿一一莱布尼茨公式带人上下限进行计算。这种方法对

于一般的定积分求解问题比较实用。

r“’(a)=f石”1e1(1似)“dx

(2)递推公式Vd>0,有

r(a+1)=ar(a)。

这个性质可有分布积分公式得到。

,+∞

,+蕾

在实际问题中,有许多定积分的原函数,难以计算或者计算过程非常繁杂。而如果将其进行适量的变量代换,变为我们熟悉的定积分,那么这一问题就

得到了很好的解决。欧拉积分恰恰就是我们解决这

r(a+1)=I

Xae-x

石。e—dx=I加

x。d(一

欧拉积分在求解定积分中的应用

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

2009年9月第23卷第3期

阴山学刊

YINSHANACADEMICJOURNAL

Sep.2009V01.23

No.3

欧拉积分在求解定积分中的应用

(包头师范学院学报编辑部,内蒙古包头014030)

摘要:本文叙述了欧拉积分的定义及相关性质,着重通过举例说明欧拉积分在实际计算中的应用。关键词:欧拉积分;定义;性质;应用

中图分类号:0172.2文献标识码:A文章编号:1004—1869(2009)03-0022—03

求解定积分是学习高等数学的一个重要内容,也是解决数学问题的一个基本技能。求解定积分的

∞)内闭一致收敛。F(d)在区间(0,+∞)连续,求导在积分号下进行:

方法一般来说是先求出原函数,然后再根据牛顿一一莱布尼茨公式带人上下限进行计算。这种方法对

于一般的定积分求解问题比较实用。

r“’(a)=f石”1e1(1似)“dx

(2)递推公式Vd>0,有

r(a+1)=ar(a)。

这个性质可有分布积分公式得到。

,+∞

,+蕾

在实际问题中,有许多定积分的原函数,难以计算或者计算过程非常繁杂。而如果将其进行适量的变量代换,变为我们熟悉的定积分,那么这一问题就

得到了很好的解决。欧拉积分恰恰就是我们解决这

r(a+1)=I

Xae-x

石。e—dx=I加

x。d(一

极限的求解方法

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

求函数极限的方法和技巧

1、运用极限的定义

2、利用极限的四则运算性质

若 limx?xf(x)?A limg(x)?B

0x?x0(I)limx?x?f(x)?g(x)?? lim?xf(x)?limg(x)?A?B

0x0x?x0(II)limx?x?f(x)?g(x)??limf(x)?limx?xg(x)?A?B

0x?x00(III)若 B≠0 则:

limf limf(x)x?x(x)0Ax??

x?0g(x)limx?xg(x)B0IV)limx?xc?f(x)?c?lim?xf(x)?cA (c为常数)

0x0上述性质对于x??,x???,x???时也同样成立 3、约去零因式(此法适用于x?x00时,0型)

例: 求x3?x2?16xxlim?20??2x3?7x2?16x?12

3解:原式=?x?3x2?10x???(2x2?6x?20)xlim??2?x3?5x2?6x?(2x2?10x?12) lim(x?2)(x2?3x?10)(x?2)(x2?5x?6)

x??2=(x2?3x?10)xlim?6)=lim(x?5)(x?2) ??2(x2?5xx??2(x?2)(x?3)=x?5xlim

微积分-常微分方程解题方法

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

北京理工大学

微积分-常微分方程解法

常微分方程各种解题方法

程功 2011/2/16

1.几个基本定义

(1)微分方程:凡含有未知函数的导数或微分的方程叫微分方程.

实质: 联系自变量,未知函数以及未知函数的某些导数(或微分)之间的关系式.

分类1: 常微分方程: 未知函数为一元函数 偏微分方程: 未知函数为多元函数

分类2:

微分方程的阶: 微分方程中出现的未知函数的最高阶导数的阶数称之. 一阶微分方程F(x,y,y?)?0,y??f(x,y);

高阶?n?微分方程F(x,y,y?,?,y(n))?0,y(n)?f(x,y,y?,?,y(n?1)).

分类3: 线性与非线性微分方程.y??P(x)y?Q(x),x(y?)2?2yy??x?0;

?dy?3y?2z,??dx分类4: 单个微分方程与微分方程组.?

?dz?2y?z,??dx(2)微分方程的解:代入微分方程能使方程成为恒等式的函数称之.

微分方程的解的分类:

① 通解: 微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同.

例y??y,通解y?Cex;

y???y?0,通解y?C1sinx?C2cosx;

② 特解: 确定了通解中任意常数以后的解. (

求解一维对流扩散方程的一种新方法

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

第43卷第1期2010年2月武汉大学学报(工学版)

EngineeringJournalofWuhanUniversityVol.43No.1Feb.2010

文章编号:1671-8844(2010)01-0010-04

求解一维对流扩散方程的一种新方法

陈翠霞,张小峰

(武汉大学水资源与水电工程科学国家重点实验室,湖北武汉 430072)

摘要:针对常系数对流扩散方程,基于微分算子分裂算法思想,分别对对流步与扩散步运用待定系数法,以格式的

数值振荡和数值扩散最小为目标,得出各节点的权重系数,并在格式中引入无因次系数.用对流步进行计算,并将其结果作为已知值运用到扩散步的求解中,构造出一种新的一维对流扩散方程的数值求解格式.数值试验表明,相比其他已有格式,该格式可有效控制格式的数值振荡和数值扩散问题,易于编程,精度高,数值结果令人满意,较好地实现物质输移扩散的真实物理过程.

关键词:对流扩散方程;微分算子分裂算法;待定系数法;数值格式中图分类号:TV131 文献标志码:A

Anewsolutiontoone-dimensionalconvection-diffusionequation

CHENCuixia,ZHANGXiaofeng

(StateKeyLabo