线面平行面面平行判定定理及性质

“线面平行面面平行判定定理及性质”相关的资料有哪些?“线面平行面面平行判定定理及性质”相关的范文有哪些?怎么写?下面是小编为您精心整理的“线面平行面面平行判定定理及性质”相关范文大全或资料大全,欢迎大家分享。

线面、面面平行的判定与性质随堂练习(含答案)

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

线面、面面平行的判定与性质

基础巩固强化

1.(文)(2011·北京海淀期中)已知平面α∩β=l,m是α内不同于l的直线,那么下列命题中错误的是( ) ..

A.若m∥β,则m∥l C.若m⊥β,则m⊥l [答案] D

[解析] A符合直线与平面平行的性质定理;B符合直线与平面平行的判定定理;C符合直线与平面垂直的性质;对于D,只有α⊥β时,才能成立.

(理)(2011·泰安模拟)设m、n表示不同直线,α、β表示不同平面,则下列命题中正确的是( )

A.若m∥α,m∥n,则n∥α

B.若m?α,n?β,m∥β,n∥α,则α∥β C.若α∥β,m∥α,m∥n,则n∥β D.若α∥β,m∥α,n∥m,n?β,则n∥β [答案] D

[解析] A选项不正确,n还有可能在平面α内,B选项不正确,平面α还有可能与平面β相交,C选项不正确,n也有可能在平面β内,选项D正确.

2.(文)(2011·邯郸期末)设m,n为两条直线,α,β为两个平面,则下列四个命题中,正确的命题是( )

A.若m?α,n?α,且m∥β,n∥β,则α∥β B.若m∥α,m∥n,则n∥α C.若m∥α,n∥α,则m∥n

B.若m∥l,则m∥β D.若m⊥l,则m⊥β

线面平行与面面平行(教案)

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

线面平行与面面平行(教案)

§50. 线面平行与面面平行(教案)

一、复习目标

1、掌握直线与平面、平面与平面平行的定义、判定定理、性质定理,并能运用这些知识进行论证或解题.

2、理解线线平行,线面平行,面面平行之间的关系,能进行三者之间的转化.

二、课前预习

1、若直线l∥平面 ,则下列命题中,正确的是( )

A、l平行于 内的所有直线 B、l平行于过l的平面与 的交线

C、l平行于 内的任意直线 D、l平行于 内的唯一确定的直线 解:B

2、 、 表示平面,a、b表示直线,则a∥ 的充分条件是( )

A、 ⊥ ,且a⊥ B、 ∩ =b,且a∥b C、a∥b,且b∥ D、 ∥ ,且a 解:D

3、已知a、b为异面直线,且a⊥ ,b⊥ ,则平面 与平面 的位置关系是

A、 ∥ B、 与 相交 C、 与 重合 D、 与 关系不确定 解:B

4、已知直线a、b,平面α、β、γ,有下面四个命题

①若a⊥α,a⊥β,则α∥β.②若a∥α,b∥β,a∥β,a∥b,则α∥β. ③若α∥γ,β∥γ,则α∥β④若α∩γ=a.β∩γ=b且a∥b,则α∥β. 其中正确的命题是 ( )

A、①与② B、①与

线面平行与面面平行(教案)

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

线面平行与面面平行(教案)

§50. 线面平行与面面平行(教案)

一、复习目标

1、掌握直线与平面、平面与平面平行的定义、判定定理、性质定理,并能运用这些知识进行论证或解题.

2、理解线线平行,线面平行,面面平行之间的关系,能进行三者之间的转化.

二、课前预习

1、若直线l∥平面 ,则下列命题中,正确的是( )

A、l平行于 内的所有直线 B、l平行于过l的平面与 的交线

C、l平行于 内的任意直线 D、l平行于 内的唯一确定的直线 解:B

2、 、 表示平面,a、b表示直线,则a∥ 的充分条件是( )

A、 ⊥ ,且a⊥ B、 ∩ =b,且a∥b C、a∥b,且b∥ D、 ∥ ,且a 解:D

3、已知a、b为异面直线,且a⊥ ,b⊥ ,则平面 与平面 的位置关系是

A、 ∥ B、 与 相交 C、 与 重合 D、 与 关系不确定 解:B

4、已知直线a、b,平面α、β、γ,有下面四个命题

①若a⊥α,a⊥β,则α∥β.②若a∥α,b∥β,a∥β,a∥b,则α∥β. ③若α∥γ,β∥γ,则α∥β④若α∩γ=a.β∩γ=b且a∥b,则α∥β. 其中正确的命题是 ( )

A、①与② B、①与

2.2.3_线面平行的性质定理

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

2.2.3 线面平行的性质定理

必修2

第二章

点、直线、平面之间的位置关系

复习1:直线和平面的位置关系1、直线和平面有哪几种位置关系? 平行、相交、直线在平面内 2、反映直线和平面三种位置关系的依据是什么? 公共点的个数 1.直线在平面内——有无数个公共点; 2.直线与平面相交——有且只有一个公共点; 3.直线与平面平行——没有公共点。

复习2:面面平行的判定定理判定定理:平面外一条直线与此平面内一条直线平行,则该 直线与此平面平行.(线线平行,线面平行)

具备的条件是: 一线在平面外,一线在平面内;两直线互相平行。必修2 第二章 点、直线、平面之间的位置关系

思考:如果一条直线与平面平行,那么这条直线是否与这平面内的所有直线都 平行?a c

b

那么直线a会与平面 内那些线平行呢?必修2 第二章 点、直线、平面之间的位置关系

思考: 教室内日光灯管所在直线与地面平行,如何在地面上作一条直线与灯 管所在的直线平行? 怎样作平行 线?

l

a

a

如果一条直线和一个平面平行,经过这条直 线的平面和这个平面相交,那么这条直线和交线 试用文字语言将上述原理表述成一个命题. 平行.必修2 第二章 点、直线、平面之间的位置关系

探研新知

已知:如图,a∥α , a β ,α

2.2.3_线面平行的性质定理

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

2.2.3 线面平行的性质定理

必修2

第二章

点、直线、平面之间的位置关系

复习1:直线和平面的位置关系1、直线和平面有哪几种位置关系? 平行、相交、直线在平面内 2、反映直线和平面三种位置关系的依据是什么? 公共点的个数 1.直线在平面内——有无数个公共点; 2.直线与平面相交——有且只有一个公共点; 3.直线与平面平行——没有公共点。

复习2:面面平行的判定定理判定定理:平面外一条直线与此平面内一条直线平行,则该 直线与此平面平行.(线线平行,线面平行)

具备的条件是: 一线在平面外,一线在平面内;两直线互相平行。必修2 第二章 点、直线、平面之间的位置关系

思考:如果一条直线与平面平行,那么这条直线是否与这平面内的所有直线都 平行?a c

b

那么直线a会与平面 内那些线平行呢?必修2 第二章 点、直线、平面之间的位置关系

思考: 教室内日光灯管所在直线与地面平行,如何在地面上作一条直线与灯 管所在的直线平行? 怎样作平行 线?

l

a

a

如果一条直线和一个平面平行,经过这条直 线的平面和这个平面相交,那么这条直线和交线 试用文字语言将上述原理表述成一个命题. 平行.必修2 第二章 点、直线、平面之间的位置关系

探研新知

已知:如图,a∥α , a β ,α

《平行线的判定定理》导学案1

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

8.4平行线的判定定理

学习目标:

1、掌握直线平行的条件,并会进行简单的应用。 2、领悟归纳和转化的数学思想方法。

学习重点:运用平行线的判定方法判断两直线平行。 学习难点:运用平行线的判定方法进行简单的推理。

一、复习回顾:

1、证明几何命题的步骤是什么呢?

2、两条直线被第三条直线所截,如果同位角相等,那么这两条直线______。(简记为:同位角相等,两直线________。)

二、探索新知:

(1)平行线判定定理一证明:

平行线的判定定理一:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。(简记为:同旁内角互补,两直线平行。)

1、指出定理的条件和结论,并画出图形,结合图形写出已知和求证。

已知: 求证: 证明:

(2)平行线判定定理二证明:

平行线判定定理二:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。(简记为:内错角相等,两直线平行。)

1、指出定理的条件和结论,并画出图形,结合图形写出已知和求证。

已知: 求证: 证明:

三、应用新知: 1、如图,填空:

(1)∠A与_________互补,

则AB∥_______( ) (2)∠A与_________互补,

2.2.4线面、面面平行习题课

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

共享

共享

点、线、面之间的位置关系及语言表达

文字语言表达点A在直线a上 在直线a 点A不在直线a上 不在直线a 点A在平面α上 在平面α 点A不在平面α上 不在平面α 直线a在平面α内 直线a在平面α 直线a在平面α外 直线a在平面α

图形语言表达A A

符号语言表达A∈a A∈a A∈α

a aA

α

A

A∈ αα

a αa

a

b∩α= b∩α=A a∩α=φ a∩α= 或 a∥α

α

A

α

共享

1.如果一条直线上两点在 文字语言: 公理1. 文字语言: 公理1.如果一条直线上两点在 一个平面内, 一个平面内,那么这条直线在 此平面内( 此平面内(即这条直线上的所 有的点都在这个平面内)。 有的点都在这个平面内)。 图形语言: 图形语言:l α A B

符号语言: 符号语言:符号表示:

A ∈ l , B ∈ l , 且A ∈ α , B ∈ α l α

共享

文字语言: 文字语言: 公理2.过不在同一直线上的三点, 公理2.过不在同一直线上的三点,有且只 2.过不在同一直线上的三点 有一个平面. 有一个平面. 图形语言: 图形语言:B α A C

符号语言: 符号语言:

A, B, C三点不共线 有且只有一个平面α 使A ∈ α , B ∈ α , C

1.2.4两平面平行的判定及性质

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

1.2.4 平面与平面的位置关系 第1课时 两平面平行的判定及性质

【课时目标】 1.理解并掌握两个平面平行、两个平面相交的定义.2.掌握两个平面平行的判定和性质定理,并能运用其解决一些具体问题.

1.平面与平面平行的判定定理

如果一个平面内有________________都平行于另一个平面,那么这两个平面平行.用符号表示为________________________.

2.平面与平面平行的性质定理:

如果两个平行平面同时和第三个平面相交,________________________. 符号表示为:________________?a∥b. 3.面面平行的其他性质:

α∥β??

?? (1)两平面平行,其中一个平面内的任一直线平行于________________,即

a?α??

________,可用来证明线面平行;

(2)夹在两个平行平面间的平行线段________; (3)平行于同一平面的两个平面________.

一、填空题

1.平面α∥平面β,a?α,b?β,则直线a、b的位置关系是__________. 2.下列各命题中假命题有________个. ①平行于同一直线的两个平面平行; ②平行于同一平面的两个平面平行;

③一

第三讲 线面、面面垂直的判定与性质

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

高考数学

第三讲 线面、面面垂直 线面、 的判定与性质

高考数学

确定点的射影位置有以下几种方法: 确定点的射影位置有以下几种方法:① 斜线上任意一点在平面上的射影必在斜线 在平面的射影上; 在平面的射影上; ② 如果一个角所在的平面外一点到角的两边距 离相等, 离相等,那么这一点在平面上的射影在这个角 的平分线上; 的平分线上; 如果一条直线与一个角的两边的夹角相等, 如果一条直线与一个角的两边的夹角相等,那 么这一条直线在平面上的射影在这个角的平分 线上; 线上; ③两个平面相互垂直,一个平面上的点在另一个 两个平面相互垂直, 平面上的射影一定落在这两个平面的交线上; 平面上的射影一定落在这两个平面的交线上;

高考数学

利用某些特殊三棱锥的有关性质, 利用某些特殊三棱锥的有关性质,确定 顶点在底面上的射影的位置: 顶点在底面上的射影的位置:a.如果侧棱相等或侧棱与底面所成的角相等,那 如果侧棱相等或侧棱与底面所成的角相等, 如果侧棱相等或侧棱与底面所成的角相等 么顶点落在底面上的射影是底面三角形的外心; 么顶点落在底面上的射影是底面三角形的外心; b. 如果顶点到底面各边距离相等或侧面与底面 所成的角相等, 所成的角相等,那么顶点落在底面上的射影是

直线、平面平行的判定与性质

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

考点3 直线、平面平行的判定与性质

1.(徐州市2014届高考信息卷)如图,在梯形ABCD中,AB//CD,AD DC CB a, ABC 60o.平面ACEF 平面ABCD,四边形ACEF是矩形,点M在线段EF上.

(1)求证:BC 平面ACEF;

(2)当FM为何值时,AM 平面BDE?证明你的结论.

zl066

第1题图

【考点】线面垂直的判定定理;线面平行的判定定理.

【解】(1)证明:由题意知,ABCD为等腰梯形,且AB

2a,AC, 所以AC BC,

又平面ACEF 平面ABCD,平面ACEF 平面ABCD AC,

所以BC 平面ACEF. …………………6分

,AM 平面BDE. …………………8分 在梯形ABCD中,设AC BD N,连结EN,则CN:NA 1:2,

(2

)当FM

因为FM

,EF AC , ,又EM AN, 3

所以四边形EMAN为平行四边形,…………11分

所以AM NE,

又NE 平面BDE,AM 平面BDE,

所以AM 平面BDE. …………………14分

所以EM

AN=

zl067

第1题图

2. (江苏省南通市2015届高三第一次模拟考试数学试题)如图,在直三棱柱ABC A