线圈电感量怎么计算

“线圈电感量怎么计算”相关的资料有哪些?“线圈电感量怎么计算”相关的范文有哪些?怎么写?下面是小编为您精心整理的“线圈电感量怎么计算”相关范文大全或资料大全,欢迎大家分享。

线圈电感量的计算

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

线圈电感量的计算

线圈电感量的计算

在开关电源电路设计或电路试验过程中,经常要对线圈或导线的电感以及线圈的匝数进行计算,以便对电路参数进行调整和改进。下面仅列出多种线圈电感量的计算方法以供参考,其推导过程这里不准备详细介绍。

在进行电路计算的时候,一般都采用SI国际单位制,即导磁率采用相对导磁率与真空导磁率的乘积,即:μ=μrμ0 ,其中相对导磁率μr是一个没有单位的系数,μ0真空导磁率 的单位为H/m。 几种典型电感

1、圆截面直导线的电感

其中:

L:圆截面直导线的电感 [H] l:导线长度 [m] r:导线半径 [m]

μ0 :真空导磁率,μ0=4π10-7 [H/m]

【说明】 这是在 l>> r的条件下的计算公式。当圆截面直导线的外部有磁珠时,简称磁珠,磁珠的电感是圆截面直导线的电感的μr倍, μr是磁芯的相对导磁率,μr=μ/μ0 , μ为磁芯的导磁率,也称绝对导磁率, μr是一个无单位的常数,它很容易通过实际测量来求得。 2、同轴电缆线的电感

线圈电感量的计算

同轴电缆线如图2-33所示,其电感为:

其中:

L:同轴电缆的电感 [H] l:同轴电缆线的长度 [m] r1 :同轴电缆内导体外径 [m] r2:同轴电缆外导体内径 [m]

μ0:真

线圈电感量的计算

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

线圈电感量的计算

线圈电感量的计算

在开关电源电路设计或电路试验过程中,经常要对线圈或导线的电感以及线圈的匝数进行计算,以便对电路参数进行调整和改进。下面仅列出多种线圈电感量的计算方法以供参考,其推导过程这里不准备详细介绍。

在进行电路计算的时候,一般都采用SI国际单位制,即导磁率采用相对导磁率与真空导磁率的乘积,即:μ=μrμ0 ,其中相对导磁率μr是一个没有单位的系数,μ0真空导磁率 的单位为H/m。 几种典型电感

1、圆截面直导线的电感

其中:

L:圆截面直导线的电感 [H] l:导线长度 [m] r:导线半径 [m]

μ0 :真空导磁率,μ0=4π10-7 [H/m]

【说明】 这是在 l>> r的条件下的计算公式。当圆截面直导线的外部有磁珠时,简称磁珠,磁珠的电感是圆截面直导线的电感的μr倍, μr是磁芯的相对导磁率,μr=μ/μ0 , μ为磁芯的导磁率,也称绝对导磁率, μr是一个无单位的常数,它很容易通过实际测量来求得。 2、同轴电缆线的电感

线圈电感量的计算

同轴电缆线如图2-33所示,其电感为:

其中:

L:同轴电缆的电感 [H] l:同轴电缆线的长度 [m] r1 :同轴电缆内导体外径 [m] r2:同轴电缆外导体内径 [m]

μ0:真

电感线圈电感量计算公式

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

电感线圈电感量计算公式

电感量按下式计算:线圈公式

阻抗(ohm)=2*3.14159*F(工作频率)*电感量(mH),设定需用360ohm阻抗,因此:电感量(mH)=阻抗(ohm)÷(2*3.14159)÷F(工作频率)=360÷(2*3.14159)÷7.06=8.116mH

据此可以算出绕线圈数:

圈数=[电感量*{(18*圈直径(吋))+(40*圈长(吋))}]÷圈直径(吋)

圈数=[8.116*{(18*2.047)+(40*3.74)}]÷2.047=19圈

空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H)

D------线圈直径

N------线圈匝数

d-----线径

H----线圈高度

W----线圈宽度

单位分别为毫米和mH。。

空心线圈电感量计算公式:

l=(0.01*D*N*N)/(L/D+0.44)

线圈电感量l单位:微亨

线圈直径D单位:cm

线圈匝数N单位:匝

线圈长度L单位:cm

频率电感电容计算公式:

l=25330.3/[(f0*f0)*c]

工作频率:f0单位:MHZ本题f0=125KHZ=0.125

谐振电容:c单位:PF本题建义c=500...1000pf可自行先决定,或由Q

值决定

谐振电感:l单位:微亨

线圈电感的

电感计算总结

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

磁路和电感计算

不管是一个空心螺管线圈,还是带气隙的磁芯线圈,通电流后磁力线分布在它周围的整个空间。对于静止或低频电磁场问题,可以根据电磁理论应用有限元分析软件进行求解,获得精确的结果,但是不能提供简单的、指导性的和直观的物理概念。在开关电源中,为了用较小的磁化电流产生足够大的磁通(或磁通密度),或在较小的体积中存储较多的能量,经常采用一定形状规格的软磁材料磁芯作为磁通的通路。因磁芯的磁导率比周围空气或其他非磁性物质磁导率大得多,把磁场限制在结构磁系统之内,即磁结构内磁场很强,外面很弱,磁通的绝大部分经过磁芯而形成一个固定的通路。在这种情况下,工程上常常忽略次要因素,只考虑导磁体内磁场或同时考虑较强的外部磁场,使得分析计算简化。通常引入磁路的概念,就可以将复杂的场的分析简化为我们熟知的路的计算。

3.1 磁路的概念

从磁场基本原理知道,磁力线或磁通总是闭合的。磁通和电路中电流一样,总是在低磁阻的通路流通,高磁阻通路磁通较少。

所谓磁路指凡是磁通(或磁力线)经过的闭合路径称为磁路。 3.2 磁路的欧姆定律

以图3.1(a)为例,在一环形磁芯磁导率为μ的磁芯上,环的截面积A,平均磁路长度为l,绕有N匝线圈。在线圈中通入电流I,在磁芯建立磁

PFC电感计算

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

计算磁芯大小的方法有几种,最常用的就是AP法,但实际上,因为磁粉芯的磁导率随磁场强度变化较大,计算经常需要迭代重复。另外,因为磁环的规格相对比较少。我们就不用AP法计算了。而是直接拿磁芯参数过来计算,几次就可以得到需要的磁芯了。经验越丰富,计算就越快了。

适合用来做PFC电感的磁粉芯主要有三类:铁镍钼(MPP)、铁镍50(高磁通)、铁硅铝(FeSiAl)。其中,铁镍钼粉芯的饱和点大概在B=0.6附近。而后两者都可以达到1以上。 此处,我们选用某国产的铁硅铝粉芯,下面是该粉芯的一些特性曲线图:

从图上可以看见,当磁场强度上升的时候,磁导率在下降。那么电感量也就会下降。所以,我们希望电感量在承受直流偏磁时不要跌落的太多,那么设计所选择的磁场强度就不能太高。我们选用初始磁导率μ0=60的铁硅铝粉芯,那么可以从图中看到,当磁场强度为100Oe时,磁导率还有原来的42%,而当磁场强度为100Oe时,磁感应强度为0.5T,远未到饱和点。我们就把设计最大磁场强度定为100Oe。

那么根据 L=N×N×Al

H=0.4×3.14×N×I/Le

我们得到的限制条件是:0.4×3.14×SQRT(L/Al)×I/Le<100

由于100Oe时,磁导率只有初始值的42%,所

为什么线圈中塞上铁心电感系数会大大增大

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

为什么线圈中塞上铁心电感系数会大大增大

为什么线圈中塞上铁心电感系数会大大增大?

浏览次数:1008次悬赏分:0 | 解决时间:2009-1-2 16:36 | 提问者:探索路上

有答案再加分了,谢谢!

最佳答案

当加入铁心后,相同的电流下,线圈内部的空间的磁通密度B会增大。于是线圈内的磁通量就变大。那么,当电流变化时,相应的磁通变化就会变大。根据法拉第电磁感应定律,感生电动势就会比没有铁心时大。于是自感系数就增加了。

电磁感应定律

为什么线圈中塞上铁心电感系数会大大增大

计算公式 作为两种丌同现象的法拉第定律 感应电流产生的条件 感应电动势 法拉第电磁感应定律的重要意义 发现者 电磁感应不静电感应 定律简介 计算公式 作为两种丌同现象的法拉第定律 感应电流产生的条件 感应电动势 法拉第电磁感应定律的重要意义 麦克斯韦-法拉第方程 定律成立的条件

展开编辑本段 发现者

1820 年 H.C.奥斯特发现电流磁效应后,许多物理学家便试图寻找它的逆效应, 提出了磁能否产生电,磁能否对电作用的问题,1822 年 D.F.J.阿喇戈和 A.von 洪堡 在测量地磁强度时,偶然发现金属对附近磁针的振荡有阻尼作用。1824 年,阿喇 戈根据这个现象做了铜盘实验,发现转动的铜盘

电源电感功耗计算

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

电感损耗包括铁损和铜损。

电感磁芯中的功耗磁滞损耗和涡流损耗。

电感线圈中的功耗介绍。

解决方案:

法拉第定律等数学物理方法计算功耗。

双极性变化的磁通对电感施加变化的正弦电压信号得到磁芯损耗与磁感应强度的关系曲线。 用估算法计算电感总损耗。

众所周知,电感损耗包括两方面:其一是与磁芯相关的损耗,即传统的铁损;其二是与电感绕组相关的损耗,即通常所谓的铜损。

功率电感在开关电源中作为一种储能元件,开关导通期间存储磁能,开关断开期间把存储的能量传送给负载。磁滞特性是磁芯材料的典型特性,正是它产生电感磁芯的损耗。导磁率越大,磁滞曲线越窄,磁芯功耗越小。

电感磁芯中的功耗

电感在一个开关周期内由于磁场强度改变产生的能量损耗是在开关导通期间输入电感的磁能与开关断开期间输出磁能之间的差值。如果用ET代表一个开关周期电感的能量,则:。根据安培定律:和法拉第定律:,上述等式中的ET为:。随着电感电流减小,磁场强度减弱,而磁感应强度从另一回路返回并变小。在此期间,大部分能量传送给负载,而存储能量和传送能量之间的差值即为损失的能量。而磁芯由于磁滞特性引起的功耗是上述能量损耗乘以开关频率。该损耗大小与艬n有关,对于大多数铁氧体材质磁芯而言,n介于2.5~3之间。到目前为止,上述磁

为什么线圈中塞上铁心电感系数会大大增大

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

为什么线圈中塞上铁心电感系数会大大增大

为什么线圈中塞上铁心电感系数会大大增大?

浏览次数:1008次悬赏分:0 | 解决时间:2009-1-2 16:36 | 提问者:探索路上

有答案再加分了,谢谢!

最佳答案

当加入铁心后,相同的电流下,线圈内部的空间的磁通密度B会增大。于是线圈内的磁通量就变大。那么,当电流变化时,相应的磁通变化就会变大。根据法拉第电磁感应定律,感生电动势就会比没有铁心时大。于是自感系数就增加了。

电磁感应定律

为什么线圈中塞上铁心电感系数会大大增大

计算公式 作为两种丌同现象的法拉第定律 感应电流产生的条件 感应电动势 法拉第电磁感应定律的重要意义 发现者 电磁感应不静电感应 定律简介 计算公式 作为两种丌同现象的法拉第定律 感应电流产生的条件 感应电动势 法拉第电磁感应定律的重要意义 麦克斯韦-法拉第方程 定律成立的条件

展开编辑本段 发现者

1820 年 H.C.奥斯特发现电流磁效应后,许多物理学家便试图寻找它的逆效应, 提出了磁能否产生电,磁能否对电作用的问题,1822 年 D.F.J.阿喇戈和 A.von 洪堡 在测量地磁强度时,偶然发现金属对附近磁针的振荡有阻尼作用。1824 年,阿喇 戈根据这个现象做了铜盘实验,发现转动的铜盘

基于ansoft的电感解析计算

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

forlink原创,转载请注明。

交直轴电感,是同步电机分析和控制所必须的重要参数。关于如何计算,只要是电磁场有限元和电机方面的论坛,都有相关的讨论。遗憾的是大都停留在泛泛层面,鲜有具体阐述。

授人以鱼,不若授人以渔。本帖拟从电感矩阵变换的角度出发,从原理上对此问题讲清楚,并给出具体操作流程。 一、基本流程

1、参考方向(reference direction)

图1 电机参考方向的定义

2、冻结磁导率(frozen permeability)

对于线性材料来说,它的磁导率是一个常数,不存在冻结磁导率(frozen permeability)之说,也不存在饱和之说;但对于电机里面的铁磁材料而言,不同电流下,铁磁材料的磁导率是不同的,因此电感参数也不一样;实际计算电感时,要考虑电机额定运行工况时的饱和程度,计算出来的电感才有实际意义。这只有通过冻结磁导率的办法,才能实现。

冻结磁导率具体步骤如下:

(1)、计算额定工况饱和程度。此时的激励包括额定电枢绕组电流、额定励磁绕组电流,铁磁材料为非线性磁化曲线,方程为非线性方程;

(2)、在(1)中的非线性方程迭代求解结束后,计算各个单元的磁导率,并冻结各个单元的磁导率(frozen permeabi

基于ansoft的电感解析计算

标签:文库时间:2024-10-03
【bwwdw.com - 博文网】

forlink原创,转载请注明。

交直轴电感,是同步电机分析和控制所必须的重要参数。关于如何计算,只要是电磁场有限元和电机方面的论坛,都有相关的讨论。遗憾的是大都停留在泛泛层面,鲜有具体阐述。

授人以鱼,不若授人以渔。本帖拟从电感矩阵变换的角度出发,从原理上对此问题讲清楚,并给出具体操作流程。 一、基本流程

1、参考方向(reference direction)

图1 电机参考方向的定义

2、冻结磁导率(frozen permeability)

对于线性材料来说,它的磁导率是一个常数,不存在冻结磁导率(frozen permeability)之说,也不存在饱和之说;但对于电机里面的铁磁材料而言,不同电流下,铁磁材料的磁导率是不同的,因此电感参数也不一样;实际计算电感时,要考虑电机额定运行工况时的饱和程度,计算出来的电感才有实际意义。这只有通过冻结磁导率的办法,才能实现。

冻结磁导率具体步骤如下:

(1)、计算额定工况饱和程度。此时的激励包括额定电枢绕组电流、额定励磁绕组电流,铁磁材料为非线性磁化曲线,方程为非线性方程;

(2)、在(1)中的非线性方程迭代求解结束后,计算各个单元的磁导率,并冻结各个单元的磁导率(frozen permeabi