经济数学导数与微分

“经济数学导数与微分”相关的资料有哪些?“经济数学导数与微分”相关的范文有哪些?怎么写?下面是小编为您精心整理的“经济数学导数与微分”相关范文大全或资料大全,欢迎大家分享。

2、 导数与微分

标签:文库时间:2024-12-26
【bwwdw.com - 博文网】

二、 一元函数微分学 第 1 页 共 28 页

二、 导数与微分学

[选择题]

容易题 1—39,中等题40—106,难题107—135。

1.设函数y?f(x)在点x0处可导,?y?f(x0?h)?f(x0),则当h?0时,必有( )

(A) dy是h的同价无穷小量. (B) ?y-dy是h的同阶无穷小量。 (C) dy是比h高阶的无穷小量. (D) ?y-dy是比h高阶的无穷小量. 答D

2. 已知f(x)是定义在(??,??)上的一个偶函数,且当x?0时,f?(x)?0,f??(x)?0, 则在(0,??)内有( )

(A)f?(x)?0,f??(x)?0。 (B)f?(x)?0,f??(x)?0。 (C)f?(x)?0,f??(x)?0。 (D)f?(x)?0,f??(x)?0。 答C

3.已知f(x)在[a,b]上可导,则f?(x)?0是f(x)在[a,b]上单减的( )

(A)必要条件。 (B) 充分条件。

(C)充要条件。 (D)既非必要,又非充分条件。 答B

x2arctanx的渐近线的条数,则n?( )

2、 导数与微分

标签:文库时间:2024-12-26
【bwwdw.com - 博文网】

二、 一元函数微分学 第 1 页 共 28 页

二、 导数与微分学

[选择题]

容易题 1—39,中等题40—106,难题107—135。

1.设函数y?f(x)在点x0处可导,?y?f(x0?h)?f(x0),则当h?0时,必有( )

(A) dy是h的同价无穷小量. (B) ?y-dy是h的同阶无穷小量。 (C) dy是比h高阶的无穷小量. (D) ?y-dy是比h高阶的无穷小量. 答D

2. 已知f(x)是定义在(??,??)上的一个偶函数,且当x?0时,f?(x)?0,f??(x)?0, 则在(0,??)内有( )

(A)f?(x)?0,f??(x)?0。 (B)f?(x)?0,f??(x)?0。 (C)f?(x)?0,f??(x)?0。 (D)f?(x)?0,f??(x)?0。 答C

3.已知f(x)在[a,b]上可导,则f?(x)?0是f(x)在[a,b]上单减的( )

(A)必要条件。 (B) 充分条件。

(C)充要条件。 (D)既非必要,又非充分条件。 答B

x2arctanx的渐近线的条数,则n?( )

2、 导数与微分

标签:文库时间:2024-12-26
【bwwdw.com - 博文网】

二、 一元函数微分学 第 1 页 共 28 页

二、 导数与微分学

[选择题]

容易题 1—39,中等题40—106,难题107—135。

1.设函数y?f(x)在点x0处可导,?y?f(x0?h)?f(x0),则当h?0时,必有( )

(A) dy是h的同价无穷小量. (B) ?y-dy是h的同阶无穷小量。 (C) dy是比h高阶的无穷小量. (D) ?y-dy是比h高阶的无穷小量. 答D

2. 已知f(x)是定义在(??,??)上的一个偶函数,且当x?0时,f?(x)?0,f??(x)?0, 则在(0,??)内有( )

(A)f?(x)?0,f??(x)?0。 (B)f?(x)?0,f??(x)?0。 (C)f?(x)?0,f??(x)?0。 (D)f?(x)?0,f??(x)?0。 答C

3.已知f(x)在[a,b]上可导,则f?(x)?0是f(x)在[a,b]上单减的( )

(A)必要条件。 (B) 充分条件。

(C)充要条件。 (D)既非必要,又非充分条件。 答B

x2arctanx的渐近线的条数,则n?( )

高等数学-02章导数与微分

标签:文库时间:2024-12-26
【bwwdw.com - 博文网】

高等数学教案 第二章 导数与微分

第二章 导数与微分

教学目的:

1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。

2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3、 了解高阶导数的概念,会求某些简单函数的n阶导数。 4、 会求分段函数的导数。

5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。 教学重点:

1、导数和微分的概念与微分的关系;

2、导数的四则运算法则和复合函数的求导法则; 3、基本初等函数的导数公式; 4、高阶导数;

6、 隐函数和由参数方程确定的函数的导数。 教学难点:

1、复合函数的求导法则; 2、分段函数的导数; 3、反函数的导数

4、隐函数和由参数方程确定的导数。

§2. 1 导数概念 一、引例

大学高等数学 2 导数与微分答案

标签:文库时间:2024-12-26
【bwwdw.com - 博文网】

2 导数与微分

【目的要求】

1、了解导数的概念,了解可导与连续的关系,了解导数的几何意义及物理意义,记忆基本初等函数的导数公式;

2、熟练运用导数的四则运算法则及复合函数法则计算导数,会使用隐函数求导法及取对数求导法计算导数,会计算二阶导数;

3、了解微分的概念,掌握微分与导数的关系,会计算函数的微分,知道微分的应用; 4、能在计算机上进行导数及微分的计算。

【练习题】 一 单项选择题

⒈设f(x)在x=a处可导,则limf(a?nh)?f(a?mh)h?0h=( D )

A.f?(a) B. mf?(a) C. nf?(a) D.(m+n)f?(a) ⒉设f(x)=(x+1)(x+2)…(x+50),则f?(?1)=( C )

A.50!

B.-50!

C.49!

D.-49!

⒊设f(x)在x0的某邻域内二阶可导,且f?(x0)?0,则f??(x0)?0是f(x0)为极小值的( B A.必要条件

B.充分条件

C.充要条件

D.既非充分也非必要条件

⒋设y=(sinx)x,则f?(x)=( C )

A.(cosx)x B.(sinx)x C. (sinx)x

(lnsinx+xcotx)

D. (s

大学高等数学 2 导数与微分答案

标签:文库时间:2024-12-26
【bwwdw.com - 博文网】

2 导数与微分

【目的要求】

1、了解导数的概念,了解可导与连续的关系,了解导数的几何意义及物理意义,记忆基本初等函数的导数公式;

2、熟练运用导数的四则运算法则及复合函数法则计算导数,会使用隐函数求导法及取对数求导法计算导数,会计算二阶导数;

3、了解微分的概念,掌握微分与导数的关系,会计算函数的微分,知道微分的应用; 4、能在计算机上进行导数及微分的计算。

【练习题】 一 单项选择题

⒈设f(x)在x=a处可导,则limf(a?nh)?f(a?mh)h?0h=( D )

A.f?(a) B. mf?(a) C. nf?(a) D.(m+n)f?(a) ⒉设f(x)=(x+1)(x+2)…(x+50),则f?(?1)=( C )

A.50!

B.-50!

C.49!

D.-49!

⒊设f(x)在x0的某邻域内二阶可导,且f?(x0)?0,则f??(x0)?0是f(x0)为极小值的( B A.必要条件

B.充分条件

C.充要条件

D.既非充分也非必要条件

⒋设y=(sinx)x,则f?(x)=( C )

A.(cosx)x B.(sinx)x C. (sinx)x

(lnsinx+xcotx)

D. (s

导数与微分习题及答案

标签:文库时间:2024-12-26
【bwwdw.com - 博文网】

导数和微分

一、选择题

1.设函数为y=f(x),当自变量x由x0改变到x0??x时,相应的函数改变量△y为( )

A.f?x0??x??f?x0? C.f??x0???x

B.f?x0??x D.f?x0??x?

dy?3x?2?22.设y?f??,且f??x??arcsinx,则dx?3x?2?A.π

B.2π

等于(x?0)

?D. 23.设f??3??4,则limh?0f?3?h??f?3?为(2hB.-2

3C.? 2

)

C.-3

D.1

A.-1

4.设周期函数f(x)在(-∞,+∞)内可导,周期为T,又lim(T+1,f(T+1))处的切线斜率为( )

f?x??f?1?x???1,则曲线y=f(x)在点

x?02x1A. 2B.0 C.-1 D.-2

5.设f?x?在?a,b?内连续,且x0??a,b?,则点x0处(A.f(x)极限存在,但不一定可导 C.f(x)极限不存在但可导

)

6.设f?x?在x0处可导,则limA.?f??x0?

?x?0f?x0??x??f?x0?等于(?xC.f???x0?

B.f(x)极限存在且可导 D.f(x)极限不一定存在

)

D.2f??x0?

B.f??x0?

ln?1?x??

物理竞赛数学知识 - 微分(导数)

标签:文库时间:2024-12-26
【bwwdw.com - 博文网】

第一讲 极限和导数

本讲提示

本讲义编写的目的是对于高中物理中常用的微积分知识做一个相对体系的介绍,并指导同学在实际的物理情景中应用。讲义在内容上注重讲清数学知识的概念与思维方式,相对于野蛮的“摔公式”教学方法,同学们能一定程度上领略微积分的奇妙与美感。

本节知识提纲

1数列极限:数列极限的定义,数列极限的计算 2函数极限:函数极限的定义,物理中极限的使用

3导数:导数扩展了物理量的定义。掌握导数的几何意义,基本求导公式,求导运算法则

最后我们一贯的反对学习数学只关心数学公式怎么使用的态度,这种情况在喜欢物理的同学中非常普遍,这种心态的学习在物理上一定也是走不远的。本讲义实际讲解的是很不严密的,代替不了真正的数学课,建议有兴趣的同学课后阅读提升对于数学的理解。

知识模块

第一部分 数列极限

知识点睛

先思考这个问题0.9999?和1哪个大?

纯洁而朴素的想法如下:0.9?1,0.99?1,0.999?1,所以无限循环小数0.9999?小于1。然而事实并非如此。令x?0.9999?,则有:

10x?9.9999?

?9 x?0.999相减得到: 9x?9 所以x?1?0.9999?

为了解释这样的事情,我们做如下分析

7(3)偏导数与全微分

标签:文库时间:2024-12-26
【bwwdw.com - 博文网】

7(3)偏导数与全微分

total differentiation

第三节 偏 导 数与全微分partial derivative

偏导数

全微分 连续性与可微性,偏导数 与可微性 小结 思考题 作业第八章 多元函数微分法及其应用1

7(3)偏导数与全微分

偏导数与全微分

一、偏导数1. 定义 设函数z f ( x , y ) 在点( x0 , y0 )的某邻域

内有定义, 将y固定为y0 , 而x在x0处有增量 x时, 函数有相应的增量 (称为关于x的偏增量).

x z f ( x0 x, y0 ) f ( x0 , y0 )如果极限 f ( x0 x , y0 ) f ( x0 , y0 ) xz lim lim x 0 x x 0 x 存在, 则称此极限为函数 z f ( x, y )在点( x0 , y0 )处 对x的偏导数, 记为2

7(3)偏导数与全微分

偏导数与全微分

xz f ( x0 x , y0 ) f ( x0 , y0 ) lim lim x 0 x x 0 x

对x的偏导数, 记为 z , f x x0 , , z x 或 f x ( x

7(3)偏导数与全微分

标签:文库时间:2024-12-26
【bwwdw.com - 博文网】

7(3)偏导数与全微分

total differentiation

第三节 偏 导 数与全微分partial derivative

偏导数

全微分 连续性与可微性,偏导数 与可微性 小结 思考题 作业第八章 多元函数微分法及其应用1

7(3)偏导数与全微分

偏导数与全微分

一、偏导数1. 定义 设函数z f ( x , y ) 在点( x0 , y0 )的某邻域

内有定义, 将y固定为y0 , 而x在x0处有增量 x时, 函数有相应的增量 (称为关于x的偏增量).

x z f ( x0 x, y0 ) f ( x0 , y0 )如果极限 f ( x0 x , y0 ) f ( x0 , y0 ) xz lim lim x 0 x x 0 x 存在, 则称此极限为函数 z f ( x, y )在点( x0 , y0 )处 对x的偏导数, 记为2

7(3)偏导数与全微分

偏导数与全微分

xz f ( x0 x , y0 ) f ( x0 , y0 ) lim lim x 0 x x 0 x

对x的偏导数, 记为 z , f x x0 , , z x 或 f x ( x