相似三角形中考压轴题及答案
“相似三角形中考压轴题及答案”相关的资料有哪些?“相似三角形中考压轴题及答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“相似三角形中考压轴题及答案”相关范文大全或资料大全,欢迎大家分享。
中考压轴题(十二)-相似三角形存在性问题
35.如图,在平面直角坐标中,二次函数图象的顶点坐标为C(4,-3),且在x轴上截得的线段AB的长为6. (1)求二次函数的解析式;
(2)点P在y轴上,且使得△PAC的周长最小,求:
①点P的坐标; ②△PAC的周长和面积;
(3)在x轴上方的抛物线上,是否存在点Q,使得以Q、A、B三点为顶点的三角形与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.
解:(1)设二次函数的解析式为y=a(x -4)2-3(a≠0),且A(x1,0),B(x2,0). ∵y=a(x -4)2-3=ax 2-8ax+16a-3 ∴x1+x2=8,x1x2=16-
3. a33)=36,∴a=. a9∴AB 2=(x1-x2)2=(x1+x2)2-4x1x2=82-4(16-
∴二次函数的解析式为y=
3(x -4)2-3. ······················································· 2分 9(2)①如图1,作点A关于y轴的对称点A′,连结A′C交y轴于点P,连结PA,则点P为所求. 令y=0,得
3(x -4)2-3=0,解得x1=1,x2=7. 9∴A(1,0),B(7,0).∴OA=1,∴OA′=
中考相似三角形经典题集锦
1、若
x24x?3y=______; ?,则
y32x?y2、若x:y:z?2:3:5,x?y?z?50,则2x?y?z? 。
3、如果点P是线段AB的黄金分割点,且AP>PB,则下列命题,①AB2?AP?PB,②BP2?AP?AB,③AP2=PB·AB,④AP:AB?PB:AP,其中正确的是 (填序号)。
4、两个相似三角形的一对对应边分别为20cm,8cm,他们的周长相差60cm ,则这两个三角形的周长为_______________, _______________.
o
5、如右图,△ABC中∠ACB=90,CD⊥AB于D。 则图中能够相似的三角形共有( )
A.1对 B.2对 C.3对 D.4对
6. 如图,D是△ABC的边AB上的一点,过点D作DE∥BC交AC于E,若AD:BD = 4:3,
则S△ADE:S四边形 BCED=______________. A D
7、如图,在梯形ABCD中,AD∥BC,AC、BD交于O点,
S?AOD:S?COB?1:9,则S?DOC:S?BOC=
B
O C
第7题
8、如图,矩形EFGH内接于△ABC
中考相似三角形经典题集锦
1、若
x24x?3y=______; ?,则
y32x?y2、若x:y:z?2:3:5,x?y?z?50,则2x?y?z? 。
3、如果点P是线段AB的黄金分割点,且AP>PB,则下列命题,①AB2?AP?PB,②BP2?AP?AB,③AP2=PB·AB,④AP:AB?PB:AP,其中正确的是 (填序号)。
4、两个相似三角形的一对对应边分别为20cm,8cm,他们的周长相差60cm ,则这两个三角形的周长为_______________, _______________.
o
5、如右图,△ABC中∠ACB=90,CD⊥AB于D。 则图中能够相似的三角形共有( )
A.1对 B.2对 C.3对 D.4对
6. 如图,D是△ABC的边AB上的一点,过点D作DE∥BC交AC于E,若AD:BD = 4:3,
则S△ADE:S四边形 BCED=______________. A D
7、如图,在梯形ABCD中,AD∥BC,AC、BD交于O点,
S?AOD:S?COB?1:9,则S?DOC:S?BOC=
B
O C
第7题
8、如图,矩形EFGH内接于△ABC
中考相似三角形填空题精选
中考相似三角形填空题精选
中考相似三角形填空题精选
1.(2009年重庆市江津区)锐角△ABC中,BC=6,S ABC 12,两动点M、N分别在边AB、AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y >0),当x = ,公共部分面积y最大,y最大值 =
,
【关键词】三角形、正方形、二次函数极值 相似 【答案】x 3,y 6
2.(2009年滨州)在平面直角坐标系中,△ABC顶点A的坐标为(2,3),若以原点O为位似中心,画△ABC的位似图形△A B C ,使△ABC与△A B C 的相似比等于
12
,则点A
的坐标为 . 【关键词】三角形位似.. 【答案】(4,6) 3.(2009威海)如图,△ABC与△A′B′C ′是位似图形,点O是位似中心,若OA=2A A′,S
△ABC
=8,则S△A′B′C ′=________.
【关键词】位似图形 【答案】18
4.(2009年吉林省)如图,△OAB的顶点B的坐标为(4,0),把△OAB沿x轴向右平移得到△CDE,如果CB 1,那么OE的长为 . 【关键词】平移,平面直角坐标系内的平移 【答案
相似三角形说课稿
《相似三角形》说课稿
各位领导、老师下午好!
今天我说的内容是:人教版九年级数学下册《相似三角形》
我将从教材分析、学情分析、教学模式、教学设计、板书设计、课堂评价6个方面来对本课进行说明 一、 说教材
1、教材所处的地位和作用
《相似三角形》是义务教育数学课程标准实验教材。相似三角形的知识是在全等三角形的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。同时对后续教学内容起奠基作用,也为学生今后学习和生活更好的运用数学做准备。 2、教学目标
(1)知识目标 探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;
(2)能力目标 通过教学渗透类比的思想方法,培养学生探究新知识的能力及运用所学知识解决实际问题的能力。
(3)情感目标: 让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。
3、教学重点、难点:
本课重点是深入理解认识相似三角形的概念 难点是 ①相似三角形性质的应用;
②促进学生有条理的思
相似三角形教案
相似三角形教案
一、教学目标
知识与技能
1. 理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。
2. 能用相似三角形周长的比等于相似比、面积比等于相似比的平方来解决简单的问题。
过程与方法
1. 经历探索相似三角形性质的过程,并在探究过程中发展学生积极的情感、态度、价值观,体验解决问题策略的多样性。
2.在探索实践中培养学生分析问题、解决问题的能力。
情感态度与价值观
1. 在获得知识的过程中培养学习的自信心 ,知道数学来源于生活有服务于生活。
2. 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.
二、重点难点
重点
理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。
难
点
相似三角形性质的灵活运用,及对“相似三角形面积的比等于相似比的平方”性质的理解,特别是对它的反向应用的理解,即对“由面积比求相似比”的理解.
三、学情分析
相似三角形的周长与面积在初中数学和中考中占有重要的位置,同时,在日常生活生产中也有广泛的应用,因此这是一节很重要的课题。学生已学习相似形的性质和判定,以及全等三角形的有关知识,在此基础上研究本节课,学生应感到并不困难。
四、教学过程设计
教学知: ABC∽ A’B’C’,根据相似的定义,我们有哪些结论?
2、
相似三角形的比例关系及相似三角形证明的变式
相似三角形的比例关系及相似三角形证明的变式
【知识疏理】
一, 相似三角形边长比,和周长比以及面积比的关系!
若两个相似三角形的对应角的平分线之比是1∶2,则这两个三角形的对应高线之比是---------,对应中线之比是------------,周长之比是---------,面积之比是-------------,若两个相似三角形的面积之比是1∶2,则这两个三角形的对应的角平分线之比是----------,对应边上的高线之比是-------- 对应边上的中线之比是----------,周长之比是--------------。
A A'
B'C'CB
图(4)图1
二, 相似三角形证明的变式
1,相似三角形当中常以乘积的形式出现,如:
例1、 已知:如图1,BE、DC交于点A,∠E=∠C。求证:DA·AC=BA·AE
E D
A
CB
图2
题目比较简单,学生独立完成,启发学生总结:①本题找对应角的特殊方法是对顶角相等;②要想证明乘积式或比例式,应先证明三角形相似。
2,对特殊图形的认识
例2、已知:如图3,Rt△ABC中,∠ABC=90o,BD⊥AC于点D。 AD
BC
图3
(1) 图中有几个直角三角形?它们相似吗?为什么
中考压轴题之因动点产生的相似三角形问题
因动点产生的相似三角形问题
例1 2013年上海市中考第24题
如图1,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.
(1)求这条抛物线的表达式;
(2)连结OM,求∠AOM的大小;
(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.
图1
动感体验
请打开几何画板 “13上海24”,拖动点C在x轴上运动,可以体验到,点C在点B的右侧,有两种情况,△ABC与△AOM相似.
请打开超级画板文件名“13上海24”,拖动点C在x轴上运动,可以体验到,点C在点B的右侧,有两种情况,△ABC与△AOM相似.点击按钮的左部和中部,可到达相似的准确位置。
思路点拨
1.第(2)题把求∠AOM的大小,转化为求∠BOM的大小.
2.因为∠BOM=∠ABO=30°,因此点C在点B的右侧时,恰好有∠ABC=∠AOM. 3.根据夹角相等对应边成比例,分两种情况讨论△ABC与△AOM相似.
满分解答
(1)如图2,过点A作AH⊥y轴,垂足为H. 在Rt△AOH中,AO=2,∠AOH=30°, 所以AH=1,OH
A( .
因为抛物线与x轴交于O、B(2,0)两点,
相似三角形题型总结
一.解答题(共21小题)
1.如图,正方形ABCD中,F为AB上一点,E是BC延长线上一点,且AF=EC,连接EF,DE,DF,M是FE中点,连接MC,设FE与DC相交于点N. (1)在以下结论①∠FDB=∠FEB;②MC垂直平分BD;③△DFN∽△EBD中正确的有 _________ ,请选择一个你认为正确的结论进行证明.
(2)若MC=,求BF的长.
2.(2011?聊城)如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G
2
重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm) (1)当t=1秒时,S的值是多少?
(2)写出S和t之间的函数解析式,并指出自变量t的取值范围;
(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.
3.(2010?崇川区模拟)用一副三角板拼成如图①所示的四边形ABCD,其中∠ADC=∠ACB=90°,∠B=60°,AD=DC=cm.若把△ADC的顶点C
相似三角形讲义(3)
相似三角形(3)
一、根据已知,探索图形相似的条件
例题1、 如图,点C、D在线段AB上,且△PCD是等边三角形. (1)当AC、CD、DB满足怎样的关系式时,△ACP∽△PDB. (2)当△PDB∽△ACP时,试求∠APB的度数.
变式1、在直角三角形中,∠ACB=90°,在△ABC外做一个直角三角形BCD,使∠BDC=90°,设AB=5,BC=3,当CD为多长时,这两个三角形相似?
例题2、(动点问题)如图,在矩形ABCD
中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.
变式1如图,在矩形ABCD
中,AB=5cm,BC=10cm,动点P在AB边上由A向B作匀速运动,1分钟可到达B点;动点Q在BC边上由B向C作匀速运动,1分钟可到达C点,若P、Q两点同时出发,问经过多长时间,恰好有PQ⊥BD?
CQB P
DA
1
变式2.(七中)如图,△ABC中,AD⊥BC于D,下列条件:⑴∠B+∠DAC=90°;
CDAC2⑵∠B=∠DAC;