概率论第二版答案
“概率论第二版答案”相关的资料有哪些?“概率论第二版答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“概率论第二版答案”相关范文大全或资料大全,欢迎大家分享。
概率论第二版习题
习题一
1
习题一
1. 用集合的形式写出下列随机试验的样本空间与随机事件A:
(1)掷两枚均匀骰子,观察朝上面的点数,事件A表示“点数之和为7”;
(2)记录某电话总机一分钟内接到的呼唤次数,事件A表示“一分钟内呼唤次数不超过3次”;
(3)从一批灯泡中随机抽取一只,测试它的寿命,事件A表示“寿命在2 000到2 500小时之间”.
2. 投掷三枚大小相同的均匀硬币,观察它们出现的面. (1)试写出该试验的样本空间;
(2)试写出下列事件所包含的样本点:A={至少出现一个正面},B={出现一正、二反},C={出现不多于一个正面};
(3)如记Ai={第i枚硬币出现正面}(i=1,2,3),试用A1,A2,A3表示事件A,B,C. 3. 袋中有10个球,分别编有号码1~10,从中任取1球,设A={取得球的号码是偶数},B={取得球的号码是奇数},C={取得球的号码小于5},问下列运算表示什么事件:
(1)AB;(2)AB;(3)AC;(4)AC;(5)AC;(6)BC;(7)A?C.
?1??14. 在区间[0,2]上任取一数,记A??x?x?1?,B??x?x??2??43??,求下列事件的表2?达式:(1)AB;(2)AB;(3)AB,(
概率论第二版习题
习题一
1
习题一
1. 用集合的形式写出下列随机试验的样本空间与随机事件A:
(1)掷两枚均匀骰子,观察朝上面的点数,事件A表示“点数之和为7”;
(2)记录某电话总机一分钟内接到的呼唤次数,事件A表示“一分钟内呼唤次数不超过3次”;
(3)从一批灯泡中随机抽取一只,测试它的寿命,事件A表示“寿命在2 000到2 500小时之间”.
2. 投掷三枚大小相同的均匀硬币,观察它们出现的面. (1)试写出该试验的样本空间;
(2)试写出下列事件所包含的样本点:A={至少出现一个正面},B={出现一正、二反},C={出现不多于一个正面};
(3)如记Ai={第i枚硬币出现正面}(i=1,2,3),试用A1,A2,A3表示事件A,B,C. 3. 袋中有10个球,分别编有号码1~10,从中任取1球,设A={取得球的号码是偶数},B={取得球的号码是奇数},C={取得球的号码小于5},问下列运算表示什么事件:
(1)AB;(2)AB;(3)AC;(4)AC;(5)AC;(6)BC;(7)A?C.
?1??14. 在区间[0,2]上任取一数,记A??x?x?1?,B??x?x??2??43??,求下列事件的表2?达式:(1)AB;(2)AB;(3)AB,(
概率论 第二版 杨振明 课后题答案
2.1.习题
1.设随机变量?的分布函数为F(x),证明?机变量,并求?的分布函数.
证明:由定理2.1.3随机变量的Borel函数仍为随机变量, 故?
?pq?11?qp?
1?p21?q2
?e?也是随
?pq?11?qp?
(1?p)qp(1?q)?e?也是随机变量.
??的分布函数为
F?(y)?P{??y}?P{e??y}
当当
pq?
1?p1?q4.在半径为R的圆内任取一点(二维几何概型),试求此点到圆心之距离?的分布函数及P{??y?0时,{e??y}??,故F?(y)?0;
y?0时
,
2R}. 3R
解:此点到圆心之距离?的分布函数为
F?(y)?P{??y}?P{e??y}?P{??lny}?F?(y)
因此,?的分布函数为
F(x)?P{??x}
ln当x?0时,{??x}??,F?x??0;
?F(lny),y?0. F?(y)???y?0?03.假定一硬币抛出正面的概率为
?x2x2?2当0?x?R时,F(x)?P{??x}?2?RR当x?;
R时, F?x??1
p(0?p?1),反复抛这
故?的分布函数为
枚硬币直至正面与反面都出现过为止,试求:(1)抛掷次数?的密度阵;
概率论 第二版 杨振明 课后题答案
2.1.习题
1.设随机变量?的分布函数为F(x),证明??e也是随机变量,并求?的分布函数.
证明:由定理2.1.3随机变量的Borel函数仍为随机变量, 故??e也是随机变量.
???pq?11?p2?qp ?11?q2
?pq?1(1?p)qq1?q?qp?1p(1?q)
?p1?p?
?的分布函数为
F?(y)?P{??y}?P{e?y}
当y?0时,{e当
??4.在半径为R的圆内任取一点(二维几何概型),试求此点到圆心之距离?的分布函数及P{??2R3}. ?y}??,故F?(y)?0;
解:此点到圆心之距离?的分布函数为
R
y?0?时,
F(x)?P{??x}
F?(y)?P{??y}?P{e?y}?P{??lny}?F?(
因此,?的分布函数为
y)ln当x?0时,{??x}??,F?x??0;
?F?(lny),F?(y)??0?y?0y?0当0?x?R时,F(x)?P{??x}?.
当x?R时, F?x??1 故?的分布函数为
?x?R22?xR22;
3.假定一硬币抛出正面的概率为p(0?p?1),反复抛这枚硬币直至正面与反面都出现过为止,试求:(1)抛掷次数?的密度阵;(
概率论与数理统计及其应用第二版课后答案
概率论与数理统计及其应用习题解答
1 第1章 随机变量及其概率
1,写出下列试验的样本空间:
(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录
投掷的次数。
(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,
记录投掷的次数。
(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰
子,观察出现的各种结果。
解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;
(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。
2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(___
___AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P ,
375.0)()(])[()(=-=-=AB P B P B A S P B A P ,
875.0)(1)(___
--=AB P AB P ,
5.0)(625.0
概率论第二版第1、2章习题解答
第1章 随机事件与概率
习 题 1.2
2.一批产品由95件正品和5件次品组成,从中不放回抽取两次,每次取一件. 求:(1)第一次抽得正品且第二次抽得次品的概率;(2)抽得正品和次品各一件的概率.
解 设A={第一次抽得正品且第二次抽得次品},B={抽得正品和次品各一件},则
11C95?C519P(A)?1??0.048, 1C100?C993961111C95?C5?C5?C9538P(B)???0.096. 11C100?C993963.从0,2,3,4,5,6这六个数中任取三个数,求取得的三个数字能组成三位数且为偶数的概率.
解 据题意,可分为“个位是0”与“个位不是0”两种情况,即所求事件的概率为
111A52?C3C4C45?4?3?4?417. p???3A66?5?4304.已知某城市中有55%的住户订日报,65%的住户订晚报,且至少订这两种报中一种的住户比同时订两种报的住户多一倍,求同时订两种报的住户占百分之几.
解 设A={住户订日报},B={住户订晚报},则P(A)?0.55,P(B)?0.65,
)?2P(A,B) 且 P(A?B)P(AB?)从而有
概率论第二版第1、2章习题解答
第1章 随机事件与概率
习 题 1.2
2.一批产品由95件正品和5件次品组成,从中不放回抽取两次,每次取一件. 求:(1)第一次抽得正品且第二次抽得次品的概率;(2)抽得正品和次品各一件的概率.
解 设A={第一次抽得正品且第二次抽得次品},B={抽得正品和次品各一件},则
11C95?C519P(A)?1??0.048, 1C100?C993961111C95?C5?C5?C9538P(B)???0.096. 11C100?C993963.从0,2,3,4,5,6这六个数中任取三个数,求取得的三个数字能组成三位数且为偶数的概率.
解 据题意,可分为“个位是0”与“个位不是0”两种情况,即所求事件的概率为
111A52?C3C4C45?4?3?4?417. p???3A66?5?4304.已知某城市中有55%的住户订日报,65%的住户订晚报,且至少订这两种报中一种的住户比同时订两种报的住户多一倍,求同时订两种报的住户占百分之几.
解 设A={住户订日报},B={住户订晚报},则P(A)?0.55,P(B)?0.65,
)?2P(A,B) 且 P(A?B)P(AB?)从而有
02概率论第二章练习答案
《概率论》第二章 练习答案
一、填空题:
1.设随机变量X的密度函数为f(x)=??2x
o???1则用Y表示对X的3次独立重复的观察中事件
?0其它(X≤
12)出现的次数,则P(Y=2)= 。
P(X?112)??122xdx? 04p(Y?2)?C2123193(4)(4)?64 2. 设连续型随机变量的概率密度函数为:
ax+b 0 f (x) = 0 其他 且EX= 13,则a = _____-2___________, b = _____2___________。 ?1????(ax?b)dx?1?0 ?1?x(ax?b)dx?1??03解之 3. 已知随机变量X在[ 10,22 ] 上服从均匀分布,则EX= 16 , DX= 12 4. 设?为随机变量,E??3,E?2?11,则E(4??10)? 4E??10?22 D(4??10)?16D??16?E?2?(E?)2??32 5. 已知X的密度为?(x)? ax?b0?x?10 其他,且
《概率论》第二章习题
第二章 事件与概率
1、字母M,A,X,A,M分别写在一张卡片上,充分混合后重新排列,问正好得到顺序MAAM的概率是多少?
解:这五个字母自左往右数,排第i个字母的事件为Ai,则
P(A1)?2211,P(A2A1)?,P(A3A2A1)?,P(A4A3A2A1)? 5432P(A5A4A3A2A1)?1。
利用乘法公式,所求的概率为
P(A1A2A3A4A5)?P(A1)P?A2A1?P?A3A2A1?P?A4A3A2A1?P?A5A4A3A2A1??22111????1? 5432302、有三个孩子的家庭中,已知有一个是女孩,求至少有一个男孩的概率。
解:有三个孩子的家庭总共有23=8个类型。设A={三个孩子中有一女},B={三个孩子中至少有一男},A的有利场合数为7,AB的有利场合为6,依题意所求概率为P(B|A),则
P?BA??P(AB)6/86??.
P(A)7/873、若M件产品中包含m件废品,今在其中任取两件,求:(1)已知取出的两件中有一件是废品的条件下,另一件也是废品的条件概率;(2)已知两件中有一件不是废品的条件下,另一件是废品的条件概率;(3)取出的两件中至少有一件是废品的概率。
3、解:(1)M件产品中有
概率论答案
习题二答案
1.随机变量的分布函数、分布律、密度函数有何联系与区别?
答:随机变量的分布刻画了随机变量的取值规律,不管是连续型、离散型或既不是连续型,也不是离散型随机变量都可用分布函数来描述其取值的规律;而分布律只用来描述离散型随机变量的取值规律;密度函数只能来描述连续型随机变量的取值规律。它们的联系在于当知道了X的分布律,可通过求概率
(x取任意的值)求得X的分布函数
;
仅之亦然。当知道了连续型随机变量的密度函数积分可通过对
求导,即求得密度函数
,可通过
,
,求得分布函数
(对一切
2. 同时掷两枚骰子,求两枚骰子的点数之和X 的概率分布,并计算P{X≤3}和P{X>13}.
解:由题意X的正概率点为2,3,?12
, k=2,3,?12
3. 某产品共17件,其中有次品3件,现从中任取5件,求抽得次品数X 的概率分布,并计算P{1≤X<2} 解:
,
4. 一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号显示的时间相等,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布 解:X 的可能取值为0,1,2,3 车在第i个路口首次遇到红灯