对数函数的计算题型及答案
“对数函数的计算题型及答案”相关的资料有哪些?“对数函数的计算题型及答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“对数函数的计算题型及答案”相关范文大全或资料大全,欢迎大家分享。
对数函数计算全
§2.2 对数函数 2.2.1 对数与对数运算
1.对数的概念
一般地,如果ax=N (a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数.
(2)根据对数的定义,对数logaN(a>0,且a≠1)具有下列性质: ①零和负数没有对数,即N>0; ②1的对数为零,即loga1=0; ③底的对数等于1,即logaa=1. 2.对数的运算法则 (1)基本公式
①loga(MN)=logaM+logaN (a>0,a≠1,M>0,N>0)
M
②loga=logaM-logaN (a>0,a≠1,M>0,N>0)
N
③logaMn=n·logaM (a>0,a≠1,M>0,n∈R) 3.对数换底公式
在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底
logcN
公式:logbN= (b>0,且b≠1;c>0,且c≠1;N>0).
logcb
由换底公式可推出下面两个常用公式:
1
(1)logbN=或logbN·logNb=1 (N>0,且N≠1;b>0,且b≠1);
logNbm
(2)logbnNm=logbN(N>0;b>0,且b≠1;n≠0,m∈R)
n
.
对数函数
《对数函数》说课稿 一、说教材 1、地位和作用
本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的基本初等函数之一,在已学习对数、反函数以及指数函数的基础上以类比的方法进行学习,这有利于学生加深学生对函数、反函数认识及函数性质的理解;同时对数函数作为常用数学模型在解决社会生活中的实例有广泛的应用,也是高考必考的内容之一。本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。 2、教学目标
教学目标是教学的出发点和归宿,《数学教学大纲》除了要求使学生掌握必要的数学基础知识外,还要求对学生进行能力培养和思想教育。根据大纲要求,结合教材和学生的水平状况。我确定了以下教学目标:
(1)理解指数函数与对数函数的内在关系; (2)掌握对数函数的概念、图象和性质;
(3)培养学生用类比方法探索研究数学问题的素养; (4)提高学生信息检查和整合能力; (5)学习辩证唯物主义观点。 3、重点和难点:
重点:对数函数的概念、图象与性质。 难点:指数函数与对数函数的内在的关系。 二、说教法
教法的好坏,直接影响课堂教学的质量。选择教学方法的原则,概括起来有三点:要服
对数与对数函数
???线????○???? ???线????○????
绝密★启用前
2013-2014学年度???学校5月月考卷
试卷副标题
考试范围:xxx;考试时间:100分钟;命题人:xxx 题号 得分 一 二 三 总分 注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 ??○ __○?___?_?__?_?__?:?号?订考_订_?___??___??___??:级?○班_○?___?_?__?_?___??:名?装姓装_?__?_?___??___??_:校?○学○????????外内????????○○????????2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明 评卷人 得分 一、选择题(题型注释)
1.若f(x)??12x2?bln(x?2)在(?1,??)上是减函数,则b的取值范围是( ) A. [?1,??) B. (?1,??) C. (??,?1] D. (??,?1) 【答案】C 【解析】
试题分析:因为f(x)??12x2?bln(x?2)在(?1,??)上是减函数,所以f?(x)?0在(?1,??)恒成立,而f?(x)??x?bbx?2,所以?x?x
第五讲对数及对数函数
小太阳数学辅导班
第五讲:对数及对数函数
1.对数的定义
如果a?N?a?0,a?1?,那么b叫做以a为底N的对数,记作logaN?b,N叫真数.
b2.对数恒等式:a3.对数的性质
logaN?N.
(1)负数与零没有对数,即N?0; (2)1的对数等于0,即loga1?0; (3)底数的对数等于1,即logaa?1. 4.对数的运算性质
(1)loga(MN)?logaM?logaN (2)loganM?logaM?logaN N1n logab (5)logab?logbamn(3)logaM?nlogaM(n?R) (4)logamb=5.换底公式
logaN?logmN?a?0,a?1,m?0,m?1,N?0?
logma6.常用对数与自然对数
以10为底的对数叫做常用对数,记作lgN;以e?e?2.71828????为底的对数叫做自然对数,记作lnN. 7.对数函数的定义
函数y?logax(a?0且a?1)叫做对数函数,它的定义域是正实数集,值域是实数集. 8.对数函数的图象和性质 32.5a?1 32.5220?a?1 1.51.5111110.50.5图象 -10-0.512345
对数函数的性质
对数函数的性质
选择题。
1、下列各组函数中,表示同一函数的是( )
A、y 2log2x与y log2x B、y 102lgx与y lg10
xxC、y x与y xlogxx D、y x与y lne
2、函数y 2 log2x(x 1)的值域是( )
A、[2, ) B、( ,2) C、(2, ) D、[3, )
3、函数y loga(3x 2)(a 0,a 1)的图象过定点( )
A、(1,0) B、(0,1) C、(0,) D、(,0)
110.24、设a log13,b (),c 23,则( ) 322323
A、a b c B、c b a C、c a b D、b a c 5、y loga(3a 1)恒为正值,则a的取值范围为( )
11212 B、 a C、a 1 D、 a 或a 1 33333
16
、0 a 1,x logalogay loga5,z l
对数函数和对数运算
对数函数和对数运算
开心一刻
四十出头的莉莲心脏病突发,被送往医院急救。病情十分糟糕,莉莲感觉自己几乎都已经死了。
抢救中,莉莲突然听见了上帝的声音:“不,你不会死的,你还可以活45年6个月零两天,鼓起勇气活下去!”
当然,结果是莉莲奇迹般地被救活了。
身体复原后,莉莲想到自己还能活40多年,便没有急着出院,先是修脸,接着是补唇,然后是隆胸,最后是瘦腹,一古脑儿连续做了4个美容手术,然后又叫了专业美发师上门服务,改换了发色、做了个新潮发型,整个儿看起来年轻了十几岁。
当最后一个整形手术完成后,莉莲便高高兴兴地办理了出院手续,没想到在门口却被一辆急速驶过的救护车撞死了。
到了天堂后,莉莲生气地质问上帝:“既然你说过我还可以活45年,那么你就不应该食言。”
上帝尴尬地耸了耸肩,答道:“真是对不起,当时,车子撞你时……我没认出是你。”
一、知识点回顾
如果 a > 0,a 1,M > 0, N > 0 有:
loga(MN) logaM logaN
Mloga logaM logaN
Nn
logaM nlogaM(n R)
(1)(2) (3)
公式: 证明:设
log
b
N
log
a
N
logab
x logbN,则bx N,两边取以a为底的对数,得 logab logaN
财务管理计算题型及答案
财务管理计算题型及答案
精品文档就在这里
-------------各类专业好文档,值得你下载,教育,管理,论文,制度,方案手册,应有尽有--------------
------------------------------------------------------------------------------------------------------------------------------------------
--
1、某企业发行债券筹资,面值500元,期限5年,发行时市场利率10%,每年未付息,到期还本,复利计息。
要求:分别按票面利率为8%计算债券的发行价格。
2、某企业发行债券筹资,面值500元,期限5年,发行时市场利率10%,每年未付息,到期还本,复利计息。
要求:分别按票面利率为10%计算债券的发行价格。
3、某企业发行债券筹资,面值500元,期限5年,发行时市场利率10%,每年未付息,到期还本,复利计息。
要求:分别按票面利率为12%计算债券的发行价格。
4、某企业发行债券筹资,面值500元,期限5年,发行时市场利率10%,每年未付息,到期还本,单利计息。
要求:分别按票面利率为8%计算债券的发行价格。
5、某企业1月1日向
对数与对数运算、对数函数教案(含答案)
对数与对数运算
一、
复习
1.对数的定义 logaN?b 其中 a?(0,1)?(1,??)与 N?(0,??) 2.指数式与对数式的互化 ab?N?logaN?b (a?0且a?1)
3.重要公式:
⑴负数与零没有对数; ⑵loga1?0,logaa?1 ⑶对数恒等式alogaN?N am?an?am?n(m,n?R)4.指数运算法则 (a)?amnmn(m,n?R) (ab)n?an?bn(n?R)二、新授内容
1.积、商、幂的对数运算法则:
如果 a > 0,a ? 1,M > 0, N > 0 有:
loga(MN)?logaM?logaN(1)Mloga?logaM?logaN(2)
NlogaMn?nlog(3)aM(n?R)证明⑴:设logaM=p, logaN=q. 由对数的定义可以得:M=a,N=a. ∴MN= aa=aN.
证明⑵:设logaM=p,logaN=q. 由对数的定义可以得M=a,N=a .
p
qp
qp?qp
q ∴logaMN=logaap?q ∴logaMN=p+q, 即证得logaMN=logaM + logaMMMMap?p?q ∴loga?p?q
对数与对数运算、对数函数教案(含答案)
对数与对数运算
一、
复习
1.对数的定义 logaN?b 其中 a?(0,1)?(1,??)与 N?(0,??) 2.指数式与对数式的互化 ab?N?logaN?b (a?0且a?1)
3.重要公式:
⑴负数与零没有对数; ⑵loga1?0,logaa?1 ⑶对数恒等式alogaN?N am?an?am?n(m,n?R)4.指数运算法则 (a)?amnmn(m,n?R) (ab)n?an?bn(n?R)二、新授内容
1.积、商、幂的对数运算法则:
如果 a > 0,a ? 1,M > 0, N > 0 有:
loga(MN)?logaM?logaN(1)Mloga?logaM?logaN(2)
NlogaMn?nlog(3)aM(n?R)证明⑴:设logaM=p, logaN=q. 由对数的定义可以得:M=a,N=a. ∴MN= aa=aN.
证明⑵:设logaM=p,logaN=q. 由对数的定义可以得M=a,N=a .
p
qp
qp?qp
q ∴logaMN=logaap?q ∴logaMN=p+q, 即证得logaMN=logaM + logaMMMMap?p?q ∴loga?p?q
对数函数及其性质
篇一:对数函数及其性质经典练习题
第十七次作业 对数函数及其性质(一)
班级_____________姓名_______________座号___________
1.函数f(x)=lg(x-1)+4-x的定义域为( ) A.(1,4] B.(1,4) C.[1,4]D.[1,4)
x
2.函数y=2|x|的大致图象是(
)
|x|
3.若loga2<1,则实数a的取值范围是( ) A.(1,2)B.(0,1)∪(2,+∞)
1
C.(0,1)∪(1,2)D.(0,)
24.设a=log32,b=log6
1
,c=log56,则( ) 2
A.a<c<bB.b<c<a C.a<b<cD.b<a<c 5.已知a>0且a≠1,则函数y=ax与y=loga(-x)的图象可能是( )
6.函数y=log2x在[1,2]上的值域是( )
A.R B.[0,+∞) C.(-∞,1] D.[0,1] 7.函数y=
logx-1?的定义域是________.
2
8.若函数f(x)=logax(0<a<1)在区间[a,2a]上的最大值是最小值的3倍,则a的值为________.
?ex
9.已知g(x)=?
?lnx
x?01
,则g[g(3)]=________.