初二数学上册沪科版一次函数
“初二数学上册沪科版一次函数”相关的资料有哪些?“初二数学上册沪科版一次函数”相关的范文有哪些?怎么写?下面是小编为您精心整理的“初二数学上册沪科版一次函数”相关范文大全或资料大全,欢迎大家分享。
沪科版一次函数应用题精选
一次函数常考题,难题,沪科版
1、种植草莓大户张华现有22吨草莓等售,有两种销售渠道,一是运往省城直接批发给零售商,二是
(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润y(元)与运往省城直接批发零售商的草莓量x(吨)之间的函数关系式;
(2)怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润.
2、某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2 090万元,但不超过2 096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:
(1)该公司对这两种户型住房有哪几种建房方案? (2)该公司如何建房获得利润最大? (3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?
3、随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购进了A,B两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售.预计每箱水果的盈
有两种配货方案(整箱配货):
方案一:甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱;
方案二:按
初二数学上册一次函数与几何练习题及答案
初二一次函数与几何题
1、平面直角坐标系中,点A的坐标为(4,0),点P在直线y=-x-m上,且AP=OP=4,则m的值是多少?
2、如图,已知点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,试求点B的坐标。
3、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线y=1/3x+b恰好将矩形OABC分为面积相等的两部分,试求b的值。
4、如图,在平面直角坐标系中,直线y= 2x —6与x轴、y轴分别相交于点A、B,点C在x轴上,若△ABC是等腰三角形,试求点C的坐标。
5、在平面直角坐标系中,已知A(1,4)、B(3,1),P是坐标轴上一点,(1)当P的坐标为多少时,AP+BP取最小值,最小值为多少? 当P的坐标为多少时,AP-BP取最大值,最大值为多少?
y C B O A x y O A x B
6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。
7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三
沪科版一次函数应用题精选
一次函数常考题,难题,沪科版
1、种植草莓大户张华现有22吨草莓等售,有两种销售渠道,一是运往省城直接批发给零售商,二是
(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润y(元)与运往省城直接批发零售商的草莓量x(吨)之间的函数关系式;
(2)怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润.
2、某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2 090万元,但不超过2 096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:
(1)该公司对这两种户型住房有哪几种建房方案? (2)该公司如何建房获得利润最大? (3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?
3、随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购进了A,B两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售.预计每箱水果的盈
有两种配货方案(整箱配货):
方案一:甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱;
方案二:按
初二数学上册第六章一次函数复习题
八年级数学上册第六章一次函数复习题
1、请你写出一个经过点(1,1)的函数解析式 .
2、在函数y??2x?3中,当自变量x满足 时,图象在第一象限. 3、中国电信宣布,从2001年2月1日起,县城和农村电话收费标准一样,在县内通话3分钟内的收费是0.2元,每超1分钟加收0.1元,则电话费y(元)与通话时间
t(t?3分,t为正整数)的函数关系是 ;
4、老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:
甲:函数的图象经过第一象限; 乙:函数的图象经过第三象限; 丙:在每个象限内,y随x的增大而减小.
请你根据他们的叙述构造满足上述性质的一个函数: 5、一个函数的图象经过点(1,2),且y随x的增大而增大而这个函数的解析式是(只需写一个) 6、如果点A(—2,a)在函数y=?1x+3的图象上,那么a的值等于 2A、—7 B、3 C、—1 D、4
7、小明、小强两人进行百米赛跑,小明比小强跑得快,如果两人同时跑,小明肯定赢,现在小明让小强先跑若干米,图中的
初二数学上册一次函数与几何练习题及答案doc
一次函数
初二一次函数与几何题
1、平面直角坐标系中,点A的坐标为(4,0),点P在直线y=-x-m上,且AP=OP=4,则m的值是多少?
2、如图,已知点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,试求点B的坐标。
3、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线y=1/3x+b恰好将矩形
y OABC分为面积相等的两部分,试求b的值。 C B
O A x
4、如图,在平面直角坐标系中,直线y= 2x —6与x轴、y轴分别相交于点A、B,点C在x轴
y 上,若△ABC是等腰三角形,试求点C的坐标。
5、在平面直角坐标系中,已知A(1,4)、B(3,1),P是坐标轴上一点,(1)当P的坐标为多少时,AP+BP取最小值,最小值为多少? 当P的坐标为多少时,AP-BP取最大值,最大值为多少?
1
O A x B 一次函数
6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。
7、已知一次函数的图象经
初二数学第一学期讲义(15)一次函数应用
一次函数的应用
热热身:
1.下列图中反映的两个变量间的关系中,表示y是关于x的函数的是( )
A B C D
10.已知CD∥AB,∠ABC=Rt∠,AB=8cm,BC=4cm,CD=5cm,点P以1cm/s的速度从点B出发,经B-C-D-A运动到点A,设点P运动时间为t(s),△ABP的面积
2.在直角坐标系中,点P(4,y)在第一象限,且OP与x轴正半轴的夹角为60°,则y的值是( ) A.
43 B.43 C.-3 D.-1 为y(cm2),求:(1)点P在BC上运动时,y关于x
3的函数关系式及自变量x的取值范围;
3.已知一次函数y?kx?b,当?3?x?1时,
(2)当t=4.5s时,y的值是 .
1?y?9,则kb的值为( ) (3)当y的值随t的值的增大而减少时,t的范围是多 A.14 B.-6 C.-6或 14 D.-4或21 少?
D4.若一次函数 其中kb?0y?kx?b和 y?bx?k,的图像如下,则正确的是( )
C
ABP
初二数学第一学期讲义(15)一次函数应用
一次函数的应用
热热身:
1.下列图中反映的两个变量间的关系中,表示y是关于x的函数的是( )
A B C D
10.已知CD∥AB,∠ABC=Rt∠,AB=8cm,BC=4cm,CD=5cm,点P以1cm/s的速度从点B出发,经B-C-D-A运动到点A,设点P运动时间为t(s),△ABP的面积
2.在直角坐标系中,点P(4,y)在第一象限,且OP与x轴正半轴的夹角为60°,则y的值是( ) A.
43 B.43 C.-3 D.-1 为y(cm2),求:(1)点P在BC上运动时,y关于x
3的函数关系式及自变量x的取值范围;
3.已知一次函数y?kx?b,当?3?x?1时,
(2)当t=4.5s时,y的值是 .
1?y?9,则kb的值为( ) (3)当y的值随t的值的增大而减少时,t的范围是多 A.14 B.-6 C.-6或 14 D.-4或21 少?
D4.若一次函数 其中kb?0y?kx?b和 y?bx?k,的图像如下,则正确的是( )
C
ABP
初二备课教案一次函数图像性质
初中数学
名思教育个性化学习中心 名思教育个性化学习中心 教育
学生姓名 日 期
年 级 时间段 理解一次函数图像性质 理解一次函数图像性质 一次函数的图像是一条直线 一次函数的图像是一条直线
初二
科
目
数学 贺国庆
班主任 课 时
辅导教师
教学目标 教学重点 教学难点 教学难点
一次函数的图像在坐标系中的平移规律 一次函数的图像在坐标系中的平移规律 一次函数的图像作法: 通过如下 3 个步骤 (1)列表 (2)描点;[一般取两个点,根据“两点确定一条直线”的道理]; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道 2 点,并
教
连成直线即可。 (通常找函数图像与 x 轴和 y 轴的交点分别是-k/b 与 0,0 与 b) y=kx+b 时: y=kx 时(即 b 等于 0,y 与 x 成正比)
学
当 k>0 时,直线必通过一、三象限,y 随 x 的增大而增大; 当 k<0 时,直线必通过二、四象限,y 随 x 的增大而减小。 k,b 与函数图像所在象限: 当 k>0,b>0, 这时此函数的图象经过一,二,三象限。
过
当 k>0,b<0, 这时此函数的图象经过一,三,四象限。 当 k<0,b>0, 这时此函数
初二备课教案一次函数图像性质
初中数学
名思教育个性化学习中心 名思教育个性化学习中心 教育
学生姓名 日 期
年 级 时间段 理解一次函数图像性质 理解一次函数图像性质 一次函数的图像是一条直线 一次函数的图像是一条直线
初二
科
目
数学 贺国庆
班主任 课 时
辅导教师
教学目标 教学重点 教学难点 教学难点
一次函数的图像在坐标系中的平移规律 一次函数的图像在坐标系中的平移规律 一次函数的图像作法: 通过如下 3 个步骤 (1)列表 (2)描点;[一般取两个点,根据“两点确定一条直线”的道理]; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道 2 点,并
教
连成直线即可。 (通常找函数图像与 x 轴和 y 轴的交点分别是-k/b 与 0,0 与 b) y=kx+b 时: y=kx 时(即 b 等于 0,y 与 x 成正比)
学
当 k>0 时,直线必通过一、三象限,y 随 x 的增大而增大; 当 k<0 时,直线必通过二、四象限,y 随 x 的增大而减小。 k,b 与函数图像所在象限: 当 k>0,b>0, 这时此函数的图象经过一,二,三象限。
过
当 k>0,b<0, 这时此函数的图象经过一,三,四象限。 当 k<0,b>0, 这时此函数
初二一次函数习题
一次函数复习
例1:已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式。
例2:.已知2y-3与3x+1成正比例,且x=2时,y=5,(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a .
例3:.已知一次函数的图象经过点A(-3,2)、B(1,6). ①求此函数的解析式,并画出图象.
②求函数图象与坐标轴所围成的三角形面积.
例4:某一次函数的图象与直线y=6-x交于点A(5,k),且与直线y=2x-3无交点,?求此函数的关系式.
例5:某移动通讯公司开设两种业务: 业务类别 月租市内通话费 说明:1分钟为1跳次,不足1分钟费 按 全球通 50元 0.4元/跳1跳次计算,如3.2分钟为4跳次. 次 神州行 0元 0.6元/跳次 若设某人一个月内市内通话x跳次,两种方式的费用分别为z元和y元. ①写出z、y与x之间的函数关系式;
②一个月内市内通话多少跳次时,两种方式的费用相同?
③某人估计一个月内通话300跳次,应选择哪种方式合算?