stm32设置占空比的库函数

“stm32设置占空比的库函数”相关的资料有哪些?“stm32设置占空比的库函数”相关的范文有哪些?怎么写?下面是小编为您精心整理的“stm32设置占空比的库函数”相关范文大全或资料大全,欢迎大家分享。

STM32库函数功能详解

标签:文库时间:2024-08-27
【bwwdw.com - 博文网】

STM32库函数简介

一、通用输入/输出(GPIO)--------------------------------------------------------------------------------------------3 二、外部中断/事件控制器(EXTI)-----------------------------------------------------------------------------------7 三、通用定时器(TIM)-------------------------------------------------------------------------------------------------9 四:ADC寄存器------------------------------------------------------------------------25 五:备份寄存器(BKP)-------------------------------------------------------------------------------------------------33

STM32库函数功能详解

标签:文库时间:2024-08-27
【bwwdw.com - 博文网】

STM32库函数简介

一、通用输入/输出(GPIO)--------------------------------------------------------------------------------------------3 二、外部中断/事件控制器(EXTI)-----------------------------------------------------------------------------------7 三、通用定时器(TIM)-------------------------------------------------------------------------------------------------9 四:ADC寄存器------------------------------------------------------------------------25 五:备份寄存器(BKP)-------------------------------------------------------------------------------------------------33

STM32系统设置

标签:文库时间:2024-08-27
【bwwdw.com - 博文网】

#include

#include \

////////////////////////////////////////////////////////////////////////////////// //系统时钟初始化

//********************************************************************************

//V1.4修改说明

//把NVIC KO了,没有使用任何库文件! //加入了JTAG_Set函数

//////////////////////////////////////////////////////////////////////////////////

//设置向量表偏移地址 //NVIC_VectTab:基址 //Offset:偏移量 //CHECK OK //091207

void MY_NVIC_SetVectorTable(u32 NVIC_VectTab, u32 Offset) {

//检查参数合法性

assert_param(IS_NVIC_VECTTAB(NVIC_VectTab)); assert

STM32电机控制重量级库函数解析

标签:文库时间:2024-08-27
【bwwdw.com - 博文网】

STM32电机控制重量级库函数解析

Foc_svpwm.c

归属组:arithmetic

描述:PWM配置和SVPWM计算 函数: 函数 SvpwmLMotorConfig(void) SvpwmRMotorConfig(void) SvpwmTimerSynchConfig(void) 功能描述 对左电机用到外设进行配置 对右电机用到外设进行配置 双电机pwm控制时钟源Timer1、8同步,配置TIM1、TIM8、TIM5进行时钟同步 又Valpha、Vbeta输入生成SVPWM波形 输入参数 无 无 无 输出参数 无 无 无 调用函数 无 无 无 在何处被调用 foc_port.c/ FOCPortPeripheralConfig() foc_port.c/ FOCPortPeripheralConfig() foc_port.c/ FOCPortInit() foc_encoder.c/ FOCEncoderStartUp(u8 mc_ch) foc_port.c/ FOCPortArithmeticModel(u8 mc_ch) SvpwmCalcDutyCycles(STATOR_VOLTAGE,u8) typedef struct

STM32的ADC设置步骤

标签:文库时间:2024-08-27
【bwwdw.com - 博文网】

STM32是一款设计非常巧妙的控制芯片,其中ADC是非常实用的模块,它和我们之前学习过的51、430单片机中的ADC有相同的原理,但是STM32相对来说略有复杂,对于初学者来说,要想快速搞定这个模块首先一定要了解硬件结构,其次了解寄存器位的功能,熟悉ADC设置流程是最主要核心。 1)开启PA口时钟,设置PA0为模拟输入。

STM32F103RBT6的ADC通道0在PA0上,所以,我们先要使能PORTA的时钟,然后设置PA0为模拟输入。

2)使能ADC1时钟,并设置分频因子。

要使用ADC1,第一步就是要使能ADC1的时钟,在使能完时钟之后,进行一次ADC1的复位。接着我们就可以通过RCC_CFGR设置ADC1的分频因子。分频因子要确保ADC1的时钟(ADCCLK)不要超过14Mhz。 3)设置ADC1的工作模式。

在设置完分频因子之后,我们就可以开始ADC1的模式配置了,设置单次转换模式、触发方式选择、数据对齐方式等都在这一步实现。 4)设置ADC1规则序列的相关信息。

接下来我们要设置规则序列的相关信息,我们这里只有一个通道,并且是单次转换的,所以设置规则序列中通道数为1,然后设置通道0的采样周期。 5)开启AD转换器,并

STM32F4库函数笔记

标签:文库时间:2024-08-27
【bwwdw.com - 博文网】

(1)GPIO_Mode_AIN模拟输入

(2)GPIO_Mode_IN_FLOATING浮空输入 (3)GPIO_Mode_IPD下拉输入 (4)GPIO_Mode_IPU上拉输入 (5)GPIO_Mode_Out_OD开漏输出 (6)GPIO_Mode_Out_PP推挽输出 (7)GPIO_Mode_AF_OD 复用开漏输出 (8)GPIO_Mode_AF_PP复用推挽输出

平时接触的最多的也就是推挽输出、开漏输出、上拉输入这三种

推挽输出:可以输出高,低电平,连接数字器件;

开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行,一般来说,开漏是用来连接不同电平的器件,匹配电平用的,因为开漏引脚不连接外部的上拉电阻时,只能输出低电平。

浮空输入:由于浮空输入一般多用于外部按键输入,结合图上的输入部分电路,我理解为浮空输入状态下,IO的电平状态是不确定的,完全由外部输入决定,如果在该引脚悬空的情况下,读取该端口的电平是不确定的。

GPIO

GPIO_Init函数初始化 {

GPIO_InitTypeDef GPIO_InitStructure;

RCC_AHB1PeriphClockCmd(RCC_AHB1Perip

stm32试题

标签:文库时间:2024-08-27
【bwwdw.com - 博文网】

1.Cortex-M处理器采用的架构是( D)

(A)v4T (B)v5TE (C)v6 (D)v7 2.NVIC可用来表示优先权等级的位数可配置为是(D )

(A)2 (B)4 (C)6 (D)8 4.Cortex-M3的提供的流水线是( B)

(A)2级 (B)3级 (C)5级 (D)8级 5.Cortex-M3的提供的单周期乘法位数是(C )

(A)8 (B)16 (C)32 (D)64 6.STM32处理器的USB接口可达( B )

(A)8Mbit/s (B)12Mbit/s (C)16Mbit/s (D)24Mbit/s 7.Context – M3处理器的寄存器r14代表( B )

(A)通用寄存器 (B)链接寄存器 (C)程序计数器 (D)程序状态寄存器

STM32的SYSTICK详解

标签:文库时间:2024-08-27
【bwwdw.com - 博文网】

摘自网络

什么是SYSTICK:

这是一个24位的系统节拍定时器system tick timer,SysTick,具有自动重载和溢出中断功能,所有基于Cortex_M3处理器的微控制器都可以由这个定时器获得一定的时间间隔。 作用:

在单任务引用程序中,因为其架构就决定了它执行任务的串行性,这就引出一个问题:当某个任务出现问题时,就会牵连到后续的任务,进而导致整个系统崩溃。要解决这个问题,可以使用实时操作系统(RTOS).

因为RTOS以并行的架构处理任务,单一任务的崩溃并不会牵连到整个系统。这样用户出于可靠性的考虑可能就会基于RTOS来设计自己的应用程序。这样SYSTICK存在的意义就是提供必要的时钟节拍,为RTOS的任务调度提供一个有节奏的“心跳”。

微控制器的定时器资源一般比较丰富,比如STM32存在8个定时器,为啥还要再提供一个SYSTICK?原因就是所有基于ARM Cortex_M3内核的控制器都带有SysTick定时器,这样就方便了程序在不同的器件之间的移植。而使用RTOS的第一项工作往往就是将其移植到开发人员的硬件平台上,由于SYSTICK的存在无疑降低了移植的难度。

SysTick定时器除了能服务于操作系统之外,还能用于

stm32的启动分析

标签:文库时间:2024-08-27
【bwwdw.com - 博文网】

STM32的启动分析

一、 STM32的复位序列

当STM32产生复位后,做的第一件事就是读取下列两个32位整数的值:

1、 从地址0x0000,0000处取出MSP(主堆栈指针)的初始值放入MSP寄存器中; 2、 从地址0x0000,0004处取出复位向量放入PC寄存器中,然后从PC中存取的地

址出取指并开始执行。

图1:复位序列

请注意,这与传统的ARM架构以及其他的单片机完全不同,他们复位后一般是从0x0000,0000地址处取出第一条指令并执行,而一般0x0000,0000都是一条跳转指令。而在STM32中,在0地址处提供的是MSP的初始值,然后紧跟着就是向量表(上电复位时向量表是被默认放在0x04地址处,但是通过修改向量表偏移量寄存器(VTOR)可以将其定义在其他位置)。另外,向量表中的数值是32位的地址,而不是跳转指令,系统会自动将该数值存入PC寄存器中后从该32为地址指向的地址出开始执行,这有点像指针的指针。

图2:初始化MSP及PC的初始化的一个范例

因为SMT32使用的是向下生长的满栈,所以MSP初始值必须是堆栈内存的末地址加1。举例来说,如果你的堆栈区域在0x20007C00-0x20007FFF之间,那么MSP的初始值就必

STM32定位控制

标签:文库时间:2024-08-27
【bwwdw.com - 博文网】

/*作者:曹备*/

/*最后修改日期:2015-04-02*/ /*创建日期: 2015-04-02*/

/*基于STM32的单轴简易运动控制器/脉冲发生器*/ /*脉冲+方向控制步进伺服电机*/ /*

优化记录:

中断修改TIMx_PSC一个寄存器的值,而不是修改TIMx_ARR预加载寄存器+TIMx_CCRx比较值寄存器两个值,缩短中断处理时间

定位指令DRVI/DRVA中,目标频率设定过高、而实际输出脉冲数过少时,则不必加速到目标频率即进入减速区 */ /*

DRVI(A);相对定位,输出A(A取绝对值)个脉冲 A不能为0

若A为正数,则方向为正、GPIOB.0为高电平 若A为负数,则方向为负、GPIOB.0为低电平

DRVA(A) 绝对定位,输出脉冲,运行至A个脉冲的位置 若目标位置A等于当前位置D,则不执行脉冲输出 若A大于D 则方向为正GPIOB.5为高电平 若A小于D 则方向为负GPIOB.5为低电平

GPIOB.1为脉冲输出 GPIOB.0为方向输出 占空比为50%

阶梯曲线形式加减速

加减速时间以10毫秒为基本单位 加减速以每10毫秒为一级 例如

加减速时间为50毫秒,则加减速级数为50/1