线性代数矩阵公式总结
“线性代数矩阵公式总结”相关的资料有哪些?“线性代数矩阵公式总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“线性代数矩阵公式总结”相关范文大全或资料大全,欢迎大家分享。
线性代数公式总结
线性代数
①A?B?B?A
②?A?B??C?A??B?C?
③c?A?B??cA?cB ?c?d?A?cA?dA ④c?dA???cd?A
⑤cA?0?c?0或A?0。 AT??T?A
T ?A?B??AT?BT
?cA?TT?cAT。
?? ?AB??BTAT
??n?n?1??21??Cn2?n?n?1? 2D?a21A21?a22A22???a2nA2n
T转置值不变A?A
逆值变A?1?1 AcA?cnA
?,?1??2,???,?1,???,?2,?
A???1,?2,?3?,3阶矩阵 B???1,?2,?3? A?B?A?B
A?B???1??1,?2??2,?3??3?
A?B??1??1,?2??2,?3??3 A?A0??AB 0B?BE?i,j?c???1
有关乘法的基本运算
Cij?ai1b1j?ai2b2j???ainbnj 线性性质 ?A1?A2?B?A1B?A2B, A?B1?B2??AB1?AB2 ?cA?B?c?AB??A?cB? 结合
线性代数公式定理总结
1 / 35
第一章 行列式
1.逆序数 1.1 定义
n个互不相等的正整数任意一种排列为:i1i2???in,规定由小到大为标准次序,当某两个元素的先后次序与标准次序不
同时,就说有一个逆序数,该排列全部逆序数的总合用?数字的个数之和。 1.2 性质
一个排列中任意两个元素对换,排列改变奇偶性,即 ?2证明如下:
设排列为a1?alab1?bmbc1?cn,作m次相邻对换后,变成a1?alabb1?bmc1?cn,再作m?1次相邻对换后,变成a1?albb1?bmac1?cn,共经过2m?1次相邻对换,而对不同大小的两元素每次相邻对换逆序数要么增加1 ,要么减少1 ,相当于?2故原命题成立。
2.n阶行列式的5大性质
性质1:转置(行与列顺次互换)其值不变。 性质2:互换任意两行(列)其值变号。
性质3:任意某行(列)可提出公因子到行列式符号外。 性质4:任意行列式可按某行(列)分解为两个行列式之和。 性质5:把行列式某行(列)?倍后再加到另一行(列),其值不变。
行列式的五大性质全部可通过其定义证明;而以后对行列式的运算主要是利用这五个性质。
评 注 对性质4的重要拓展: 设n阶同型矩阵,
n?i1i2???in?表示,??
线性代数全公式
线性代数全公式
基本运算
①A?B?B?A
②?A?B??C?A??B?C?
③c?A?B??cA?cB ?c?d?A?cA?dA ④c?dA???cd?A
⑤cA?0?c?0或A?0。 AT??T?A
T ?A?B??AT?BT
?cA?TT?cAT。
?? ?AB??BTAT
??n?n?1??21??Cn2?n?n?1? 2D?a21A21?a22A22???a2nA2n
转置值不变AT?A 逆值变A?1?1 AcA?cnA
?,?1??2,???,?1,???,?2,? A???1,?2,?3?,3阶矩阵 B???1,?2,?3? A?B?A?B
A?B???1??1,?2??2,?3??3?
A?B??1??1,?2??2,?3??3 A?A0??AB 0B?BE?i,j?c???1
有关乘法的基本运算
Cij?ai1b1j?ai2b2j???ainbnj 线性性质 ?A1?A2?B?A1B?A2B, A?B1?B2??AB1?AB2 ?cA?B?c?AB??A?cB?
《线性代数》教学教案—02矩阵
第2章 矩阵
授课序号01 a ??
,有时为了强调矩阵的行数和列数,也记为()n a ??.
12n n nn a a a ??
11212212
000n n nn a a a a a a ?? ? ???与上三角矩阵00nn a ??2000n λλ??????,n 阶对角矩阵也常记为12diag(,,,)Λ=λλλ.
0000a a a ??????
,简记为10
001
01? ??)?ij m n a ,若当>i j 时,恒有行数增大而增多,则称该矩阵为上梯形矩阵;若当,而关于主对角线对称的元素互为相反数
授课序号02 ()a =A 122
m m m mn mn b a b a b ?+++?矩阵,则
mn n
a x ++经过线性计算得到了m 线性变换的系数a
sj b ???第一个矩阵的列数等于第二个矩阵的行数,两个矩阵的乘法才有意义,即应有A B C =次多项式.
1
2m m mn a a a ??12n n mn a a a ??
A 的转置矩阵,记作T A . 2.矩阵的转置满足的运算规律:设以下运算都有意义(1)()T T A A =; (2)(A +12m m A A A =?为非奇异矩阵,否则称为奇异矩阵. 12n n
nn A A A ?
线性代数矩阵练习题
线性代数《矩阵》相关习题
《线性代数》第二章练习题
102
9、设A是4 3矩阵且r(A) 2,B 020
,则r(AB)
103
一、填空题
10、设A 100
220
,则(A ) 1 1、设A 12 3 2 T
13 ,B 21
,则;;B 345
300 2、设矩阵A 15 13 B 31
则3A B ,11、设A 140
,则(A 2I) 1
, 20 ,
A 1B
。
003
3、设A为三阶矩阵,且A 2,则2A* A 1
5200
4、设矩阵A为3阶方阵,且|A|=5,则|A*|=______,|2A|=_____
12、设A 2
100
001 2 ,则A 1
3、设A 120 340 23 1 ABT
00
11
,B 121
240
,则= 13、已知A为四阶方阵,且A
1
112
,则(3A) 1 2A 4、设A 1 225
,且r(A) 2,则t
11t 214、设 A
3
,A2 _________,An=_________
1233 03 12 4
5、若
线性代数公式定理综合
第一章
1.逆序数 1.1 定义
行列式
n个互不相等的正整数任意一种排列为:i1i2???in,规定由小到大为标准次序,当某两个元素的先后
次序与标准次序不同时,就说有一个逆序数,该排列全部逆序数的总合用??i1i2???in?表示,
??i1i2???in?等于它所有数字中后面小于前面数字的个数之和。
1.2 性质
一个排列中任意两个元素对换,排列改变奇偶性,即 ?22.n阶行列式的5大性质
性质1:转置(行与列顺次互换)其值不变。 性质2:互换任意两行(列)其值变号。
性质3:任意某行(列)可提出公因子到行列式符号外。 性质4:任意行列式可按某行(列)分解为两个行列式之和。 性质5:把行列式某行(列)?倍后再加到另一行(列),其值不变。
行列式的五大性质全部可通过其定义证明;而以后对行列式的运算主要是利用这五个性质。
评 注 对性质4的重要拓展: 设n阶同型矩阵,以,
???1??1。
A??aij?; B??bij??A?B??aij?bij?,而行列式只是就某一列分解,所
nA?B应当是2个行列式之和,即A?B?A?B
。
评 注 韦达定理的一般形式为:
anx?an?1xnn?1?an?2xn?2nan?1a
线性代数复习总结
概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确
?A可逆 ??r(A)?n ??A的列(行)向量线性无关 ?A的特征值全不为0 A?0???Ax??只有零解 ?? ?x??,Ax?? ????Rn,Ax??总有唯一解 ?AT?A是正定矩阵 ?A?E ??A?p1p2???ps pi是初等阵??存在n阶矩阵B,使得AB?E 或 AB?E注:全体n维实向量构成的集合Rn叫做n维向量空间. ?A不可逆 ?r(A)?n A?0????A的列(行)向量线性相关 ??0是A的特征值 ??Ax??有非零
线性代数复习总结
概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确
?A可逆 ??r(A)?n ??A的列(行)向量线性无关 ?A的特征值全不为0 A?0???Ax??只有零解 ?? ?x??,Ax?? ????Rn,Ax??总有唯一解 ?AT?A是正定矩阵 ?A?E ??A?p1p2???ps pi是初等阵??存在n阶矩阵B,使得AB?E 或 AB?E注:全体n维实向量构成的集合Rn叫做n维向量空间. ?A不可逆 ?r(A)?n A?0????A的列(行)向量线性相关 ??0是A的特征值 ??Ax??有非零
线性代数 第2章 矩阵及其运算
第二章矩阵及其运算
1
1
向前
向后
返回
第一章
矩阵
一、矩阵概念的引入二、矩阵的定义三、小结、思考题
第二节矩阵及其运算2
向前
向后
返回
n n n n m m mn n m
a x a x a x
b a x a x a x b a x a x a x b +++=??+++=??
??+++=?1111221121122222
1122 1. 线性方程组的解取决于
(),,,;,,,,ij a i m j n ==1212 系数()
,,,i b i m =12 常数项一、矩阵概念的引入
3
向前
向后
返回
n n m m mn
m a a a b a a a b a a a b ????????????
11
12112122221
2
对线性方程组的研究可转化为对这张表的研究.
线性方程组的系数与常数项按原位置可排为
2. 某航空公司在A,B,C,D 四城市之间开辟了若干航线,如图所示表示了四城市间的航班图,如果从A 到B 有航班,则用带箭头的线连接A 与B.
A
B
C
D
4
向前
向后返回
四城市间的航班图情况常用表格来表示:
发站
到站A
B C D A
B C D
其中表示有航班.
为了便于计算,把表中的改成1,空白地方填上
0,就得到一个数表:
5
向前
向后
返回
111111
高等数学线性代数公式大全
线性代数公式大全
1、行列式
1. n行列式共有n2个元素,展开后有n!项,可分解为2n行列式; 2. 代数余子式的性质:
①、Aij和aij的大小无关;
②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A; 3. 代数余子式和余子式的关系:Mij?(?1)i?jAij4. 设n行列式D:
将D上、下翻转或左右翻转,所得行列式为D1,则D1?(?1)?Aij?(?1)i?jMij
n(n?1)2D; D;
将D顺时针或逆时针旋转90,所得行列式为D2,则D2?(?1)将D主副角线翻转后,所得行列式为D4,则D4?D; 5. 行列式的重要公式:
①、主对角行列式:主对角元素的乘积;
②、副对角行列式:副对角元素的乘积??(?1)n(n?1)2n(n?1)2将D主对角线翻转后(转置),所得行列式为D3,则D3?D;
;
③、上、下三角行列式(?◥???◣?):主对角元素的乘积; ④、?◤?和?◢?:副对角元素的乘积??(?1)⑤、拉普拉斯展开式:
n(n?1)2;
AOACCAOA??AB、??(?1)m?nAB CBOBBOBC⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;