数学解题方法

“数学解题方法”相关的资料有哪些?“数学解题方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学解题方法”相关范文大全或资料大全,欢迎大家分享。

高中数学解题思想和解题方法

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

目 录

前言 ????????????????????? 2 第一章

高中数学解题基本方法 ????????? 3 一、 配方法 ??????????????? 3 二、 换元法 ??????????????? 7 三、 待定系数法 ????????????? 14 四、 定义法 ??????????????? 19 五、 数学归纳法 ????????????? 23 六、 参数法 ??????????????? 28 七、 反证法 ??????????????? 32 八、 消去法 ??????????????? 九、 分析与综合法 ???????????? 十、 特殊与一般法 ???????????? 十一、 十二、 第二章

类比与归纳法 ?????????? 观察与实验法 ??????????

高中数学常用的数学思想 ???????? 35

一、 数形结合思想 ???????????? 35 二、 分类讨论思想 ???????????? 41 三、 函数与方程思想 ??????????? 47 四、 转化(化归)思想 ?????????? 54 第三章

高考热点问题和解题策略 ???????? 59 一、 应用

小学数学解题常用的方法

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

一些较好解题思路

《课标》(修订稿)把“双基”改变“四基”,即改为关于数学的:基础知识、基本技能、基本思想、基本活动经验。

“基本思想”主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。 演绎和归纳不是矛盾的,其教学也不是矛盾的,通过归纳来预测结果,然后通过演绎来验证结果。在具体的问题中,会涉及到数学抽象、数学模型、等量替换、数形结合等数学思想, 但最上位的思想还是演绎和归纳。之所以用“基本思想”而不用基本思想方法,就是要与换元法、递归法、配方法等具体的数学方法区别。每一个具体的方法可能是重要的,但它们是个案,不具有一般性。作为一种思想来掌握是不必要的,经过一段时间,学生很可能就忘却了。这里所说的思想,是大的思想,是希望学生领会之后能够终生受益的那种思想方法。 史宁中教授认为:演绎推理的主要功能在于验证结论,而不在于发现结论。我们缺少的是根据情况“预测结果”的能力;根据结果“探究成因”的能力。而这正是归纳推理的能力。 就方法而言,归纳推理十分庞杂,枚举法、归纳法、类比法、统计推断、因果分析,以及观察实验、比较分类、综合分析等均可被包容。与演绎推理相反,归纳推理是一种“从特殊到一般的推理”。

借助归纳推理可以培养学生“预测结果”

数学建模解题方法与步骤

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

石家庄经济学院 信息工程学院 1 数学建模与创业计划实践部

学习目标

1.能表述建立数学模型的方法、步骤;

2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理性、技艺性和局限性等特点;; 3.能表述数学建模的分类;

4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤

—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System

Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数.

可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具

小学数学解题常用的方法

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

一些较好解题思路

《课标》(修订稿)把“双基”改变“四基”,即改为关于数学的:基础知识、基本技能、基本思想、基本活动经验。

“基本思想”主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。 演绎和归纳不是矛盾的,其教学也不是矛盾的,通过归纳来预测结果,然后通过演绎来验证结果。在具体的问题中,会涉及到数学抽象、数学模型、等量替换、数形结合等数学思想, 但最上位的思想还是演绎和归纳。之所以用“基本思想”而不用基本思想方法,就是要与换元法、递归法、配方法等具体的数学方法区别。每一个具体的方法可能是重要的,但它们是个案,不具有一般性。作为一种思想来掌握是不必要的,经过一段时间,学生很可能就忘却了。这里所说的思想,是大的思想,是希望学生领会之后能够终生受益的那种思想方法。 史宁中教授认为:演绎推理的主要功能在于验证结论,而不在于发现结论。我们缺少的是根据情况“预测结果”的能力;根据结果“探究成因”的能力。而这正是归纳推理的能力。 就方法而言,归纳推理十分庞杂,枚举法、归纳法、类比法、统计推断、因果分析,以及观察实验、比较分类、综合分析等均可被包容。与演绎推理相反,归纳推理是一种“从特殊到一般的推理”。

借助归纳推理可以培养学生“预测结果”

小学数学解题方法解题技巧之列表法

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

小学数学解题方法解题技巧之列表法

把应用题中的条件简要地摘录下来,列表分类整理、排列,并借助这个表格分析、解答应用题的方法叫做列表法。

在用列表法解题时,要仔细判断题中哪些数量是同一件事中直接相关联的,哪些数量是同一类的。排列数量时,要尽量做到“同事横对”,“同名竖对”。这就是说,要使同一件事中直接相关联的数量横向排列,使同一类的、单位名称相同的数量竖着排列,还要使它们的数位上、下对齐。

这样就可以在读题、列表的过程中正确识别数量,选择数量,理解数量之间的联系、区别,理清思路,为下一步的分析、推理作好准备。

(一)通过列表突出题目的解法特点

有些应用题的解法具有一定的特点,如果把题中的条件按一定的格式排列,整理成表,则表格会起到突出题目解法特点的作用。

例1 桌子上放着黄、红、绿三种颜色的塑料碗。3只黄碗里放着51个玻璃球,5只红碗里放着75个玻璃球,2只绿碗里放着24个玻璃球。要使每只碗里玻璃球的个数相同,每只碗里应放多少个玻璃球?(适于四年级程度)

解:摘录题中条件,排列成表15-1。 表15-1

求每只碗里应放多少个球,要先求出一共有多少个碗,和在这些碗中一共放了多少个球。由于表15-1中把碗的只数排列在前一竖行,把球的个数排列在另一

小学数学解题方法解题技巧之列表法

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

小学数学解题方法解题技巧之列表法

把应用题中的条件简要地摘录下来,列表分类整理、排列,并借助这个表格分析、解答应用题的方法叫做列表法。

在用列表法解题时,要仔细判断题中哪些数量是同一件事中直接相关联的,哪些数量是同一类的。排列数量时,要尽量做到“同事横对”,“同名竖对”。这就是说,要使同一件事中直接相关联的数量横向排列,使同一类的、单位名称相同的数量竖着排列,还要使它们的数位上、下对齐。

这样就可以在读题、列表的过程中正确识别数量,选择数量,理解数量之间的联系、区别,理清思路,为下一步的分析、推理作好准备。

(一)通过列表突出题目的解法特点

有些应用题的解法具有一定的特点,如果把题中的条件按一定的格式排列,整理成表,则表格会起到突出题目解法特点的作用。

例1 桌子上放着黄、红、绿三种颜色的塑料碗。3只黄碗里放着51个玻璃球,5只红碗里放着75个玻璃球,2只绿碗里放着24个玻璃球。要使每只碗里玻璃球的个数相同,每只碗里应放多少个玻璃球?(适于四年级程度)

解:摘录题中条件,排列成表15-1。 表15-1

求每只碗里应放多少个球,要先求出一共有多少个碗,和在这些碗中一共放了多少个球。由于表15-1中把碗的只数排列在前一竖行,把球的个数排列在另一

高中数学解题基本方法——配方法

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

掌握一种解题的基本方法。

高中数学解题基本方法——配方法

配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。

最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。

配方法使用的最基本的配方依据是二项完全平方公式(a+b)=a+2ab+b,将这个公式灵活运用,可得到各种基本配方形式,如:

a+b=(a+b)-2ab=(a-b)+2ab; 2222222

b22a+ab+b=(a+b)-ab=(a-b)+3ab=(a+)+(b); 222222

a+b+c+ab+bc+ca=

22222221222[(a+b)+(b+c)+(c+a)] 22a+b+c=(a+b+c)-2(ab+bc+ca)=(a+b-c)-2(ab-bc-ca)=

结合其它数学知识和性质,相应有另外的一些配方形式,如:

1+sin2α=1+2sinαcosα=(sinα+cosα);

x+2211

初中数学规律探究题解题方法

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

初中数学规律探究题的解法指导

广南县篆角乡初级中学 郭应龙

新课标中明确要求:用代数式表示数量关系及所反映的规律,发展学生的抽象思维能力。根据一列数或一组图形的特例进行归纳,猜想,找出一般规律,进而列出通用的代数式,称之为规律探究。在历年的中考或学业水平考试中屡见不鲜,频繁考查,考生大都感到困难重重,无从下手,导致丢分。解决此类问题的关键是:“细心观察,大胆猜想,精心验证”。笔者认为:只要善于观察,细心研究,知难而进,就会走出“山穷水尽疑无路”的困惑,收获“柳暗花明又一村”的喜悦。

一、数式规律探究

通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了学生的分析、归纳、抽象、概括能力。一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。数式规律探究是规律探究问题中的主要部分,解决此类问题注意以下三点:

1.一般地,常用字母n表示正整数,从1开始。 2.在数据中,分清奇偶,记住常用表达式。

正整数…n-1,n,n+1… 奇数…2n-3,2n-1,2n+1,2n+3…

高中数学解题基本方法

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

good

高中数学解题基本方法

换元法

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。

三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+ x的值域时,易发现x∈[0,1],设x=sin2α ,α∈[

初中数学选择题常用解题方法

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

初中数学选择题常用解题方法

选择题一般由题干(题设)和选择支(选项)组成.如果题干不是完全陈述句,那么题干加上正确的选择支,就构成了一个真命题;而题干加上错误的选择支,构成的是假命题,错误的选择支也叫干扰支,解选择题的过程就是通过分析、判断、推理排除干扰支,得出正确选项的过程.

解选择题的基本要求是:快、准.

解选择题的基本策略是:要充分利用题设和选项两方面提供的信息作出判断.一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特例判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接法解;对于明显可以否定的选项应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等.

解选择题的原则是:既要注意题目特点,充分应用供选择的答案所提供的信息,又要有效地排除错误答案可能造成的干扰,所以必须注意以下几点:认真审题;先易后难;大胆猜想;细心验证.

解选择题的关键是:能熟练运用各种解题方法或手段,以提高解题的效率;充分利用选择支所提供的信息与“只有一个正确答案”的方向,讲究解题策略,充分发挥直观的作用,发现其特殊的数量关系和图形位置等特征,迅速解题.

解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最