方程两边取对数
“方程两边取对数”相关的资料有哪些?“方程两边取对数”相关的范文有哪些?怎么写?下面是小编为您精心整理的“方程两边取对数”相关范文大全或资料大全,欢迎大家分享。
指数方程与对数方程
指数、对数方程练习与解析
【知识点】
1.指数方程与对数方程的定义:在指数上含有未知数的方程,叫做指数方程;在对数符号后面含有未知数的方程,叫做对数方程。
2.解指数、对数方程的基本思想:化同底或换元。 3.指数方程的基本类型: (1)a(2)a(3)ax?c(a?0,a?0,c?0),其解为x?logac;
?ag(x)(a?0,a?1),转化为代数方程f(x)?g(x)求解;
?bg(x)(a?0,a?1,b?0,b?1),转化为代数方程f(x)lga?g(x)lgb求解; )?0(a?0,a?0),用换元法先求方程F(y)?0的解,再解指数方程ax?y。
f(x)f(x)(4)F(ax4. 对数方程的基本类型: (1)logax?b(a?0,a?1),其解为x?ab;
?f(x)?g(x)?(2)logaf(x)?logag(x)(a?0,a?1),转化为?f(x)?0求解;
?g(x)?0?(3)F(loga
典型例题
【例1】 解下列方程: (1)9+6=2
xx2x+1
x)?0(a?0,a?0),用换元法先求方程F(y)?0的解,再解对数方程logax?y。
;
(2)log4(3-x)+log1(3+x)=log4(1
指数方程与对数方程
指数、对数方程练习与解析
【知识点】
1.指数方程与对数方程的定义:在指数上含有未知数的方程,叫做指数方程;在对数符号后面含有未知数的方程,叫做对数方程。
2.解指数、对数方程的基本思想:化同底或换元。 3.指数方程的基本类型: (1)a(2)a(3)ax?c(a?0,a?0,c?0),其解为x?logac;
?ag(x)(a?0,a?1),转化为代数方程f(x)?g(x)求解;
?bg(x)(a?0,a?1,b?0,b?1),转化为代数方程f(x)lga?g(x)lgb求解; )?0(a?0,a?0),用换元法先求方程F(y)?0的解,再解指数方程ax?y。
f(x)f(x)(4)F(ax4. 对数方程的基本类型: (1)logax?b(a?0,a?1),其解为x?ab;
?f(x)?g(x)?(2)logaf(x)?logag(x)(a?0,a?1),转化为?f(x)?0求解;
?g(x)?0?(3)F(loga
典型例题
【例1】 解下列方程: (1)9+6=2
xx2x+1
x)?0(a?0,a?0),用换元法先求方程F(y)?0的解,再解对数方程logax?y。
;
(2)log4(3-x)+log1(3+x)=log4(1
对数函数、函数与方程复习教案
对数函数、函数与方程复习教案
龙文教育学科老师个性化教案
对数函数、函数与方程复习教案
中小学 1 对 1 课外辅导专家
a>1 图 像
0<a<1
(1)定义域: 性 (2)过定点: (3)奇偶性: 质 (4)单调性: (5)当 x>0 时,y>1;当 x<0 时,0<y<1 练习:1 求下列函数的定义域。 (1)y=log5(1-x)
值域:
(4)单调性: (5)
(2)y=log7
1 1 3x
(3)y= log0.5 (4x 3)
(4)y= log 2 (1 3 x )
(5)y=logx+1(16-4x)
(6) y=
x2 4 lg( x 2 2 x 3)
对数函数、函数与方程复习教案
中小学 1 对 1 课外辅导专家
2、比较下列各值的大小 (1)log1.51.6,log1.51.4 (3) log0.30.7 和 log2.12.9 (2) log1.12.3 和 log1.22.2 (4) log1 2.7和 log1 2.82 2
3、已知集合 A={2 x },定义在集合 A 上的函数 y=logax 的最大值比最小值大 1,求 a 值
1 4、求 y (log 1
旺季取利 淡季取势
旺季取利 淡季取势
旺季取利 淡季取势
“旺季取利,淡季取势”,这应该是淡季营销的核心思想。取利,就是要夺取最大销量;取势,则是获取制高点,争取长期的战略优势。石处于山底,大而无力;置于山顶,则小而有势。同样,山顶的小草比山下之参天大树有更高的势。
同时,淡季需求不旺。企业的营销应更强调竞争导向,把更多的精力放在观注和分析竞争对手上。相对而言,旺季则应强调需求导向,顺应消费者需求的功能创新对于“取利”更有现实意义。
另外,淡季意味着绝对销量的绝对减少,应该尊重这一客观事实。 抢减量增销量
提高销量是淡季营销最直接、最现实的目标。 “旺季做销量,淡季做市场”,这句话在sales中广为流传,实际上反映了淡季中普遍的松懈思想。旺季的辛苦用命和淡季的休生养息,已然成为大多数公司的运行规律。这本也无可厚非。但常理的存在,也是机会的存
在。同时,淡季销量的增长显然不会来源于市场的增量,而是来源于对手的减量。说白了,就是在对手松懈时从他们手中抢。这也是“淡季旺做”策略被采用的原因。 “旺季抢增量,淡季抢减量
对数与对数函数
???线????○???? ???线????○????
绝密★启用前
2013-2014学年度???学校5月月考卷
试卷副标题
考试范围:xxx;考试时间:100分钟;命题人:xxx 题号 得分 一 二 三 总分 注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 ??○ __○?___?_?__?_?__?:?号?订考_订_?___??___??___??:级?○班_○?___?_?__?_?___??:名?装姓装_?__?_?___??___??_:校?○学○????????外内????????○○????????2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明 评卷人 得分 一、选择题(题型注释)
1.若f(x)??12x2?bln(x?2)在(?1,??)上是减函数,则b的取值范围是( ) A. [?1,??) B. (?1,??) C. (??,?1] D. (??,?1) 【答案】C 【解析】
试题分析:因为f(x)??12x2?bln(x?2)在(?1,??)上是减函数,所以f?(x)?0在(?1,??)恒成立,而f?(x)??x?bbx?2,所以?x?x
对数与对数运算学案
对数与对数运算
学习目标:知道对数的定义及其表示,知道常用对数.自然对数及其表示;会运用对数式与指数式的相互关系及其转化求值;知道对数的运算性质及其推导过程,能运用对数运算法则解决问题;会应用换底公式解决问题. 学习重点:对数的运算性质,用换底公式将一般对数转化成自然对数或常用对数 学习难点:对数的运算性质和换底公式的熟练运用 学习过程: 一 探究新知
1.思考下列问题:已知底数为2,指数为3,幂为8.
①已知底数2和指数3,得幂8,这种运算是什么运算?表示形式是什么? ②已知幂8和指数3,得底数2,这种运算是什么运算?表示形式是什么? ③已知底数2和幂8,得指数3,这种运算是什么运算?表示形式是什么?
2.归纳:一般地,如果a=b(a>0,且a≠1),那么数x叫做以a为底b的_____,记作x=logab,其中a叫做对数的________,b叫做_________. 因而,指数式a=b与对数式x=logab是等价的,本质是相同的,求对数就是求指数的运算.
对应练习:2=8转化为对数式为____________;lg100=2转化指数式为____________.
3.对于指数函数y=a (a>0,且a≠1)的定义域、值域是什么?那么对数式x
对数函数和对数运算
对数函数和对数运算
开心一刻
四十出头的莉莲心脏病突发,被送往医院急救。病情十分糟糕,莉莲感觉自己几乎都已经死了。
抢救中,莉莲突然听见了上帝的声音:“不,你不会死的,你还可以活45年6个月零两天,鼓起勇气活下去!”
当然,结果是莉莲奇迹般地被救活了。
身体复原后,莉莲想到自己还能活40多年,便没有急着出院,先是修脸,接着是补唇,然后是隆胸,最后是瘦腹,一古脑儿连续做了4个美容手术,然后又叫了专业美发师上门服务,改换了发色、做了个新潮发型,整个儿看起来年轻了十几岁。
当最后一个整形手术完成后,莉莲便高高兴兴地办理了出院手续,没想到在门口却被一辆急速驶过的救护车撞死了。
到了天堂后,莉莲生气地质问上帝:“既然你说过我还可以活45年,那么你就不应该食言。”
上帝尴尬地耸了耸肩,答道:“真是对不起,当时,车子撞你时……我没认出是你。”
一、知识点回顾
如果 a > 0,a 1,M > 0, N > 0 有:
loga(MN) logaM logaN
Mloga logaM logaN
Nn
logaM nlogaM(n R)
(1)(2) (3)
公式: 证明:设
log
b
N
log
a
N
logab
x logbN,则bx N,两边取以a为底的对数,得 logab logaN
对数与对数运算、对数函数教案(含答案)
对数与对数运算
一、
复习
1.对数的定义 logaN?b 其中 a?(0,1)?(1,??)与 N?(0,??) 2.指数式与对数式的互化 ab?N?logaN?b (a?0且a?1)
3.重要公式:
⑴负数与零没有对数; ⑵loga1?0,logaa?1 ⑶对数恒等式alogaN?N am?an?am?n(m,n?R)4.指数运算法则 (a)?amnmn(m,n?R) (ab)n?an?bn(n?R)二、新授内容
1.积、商、幂的对数运算法则:
如果 a > 0,a ? 1,M > 0, N > 0 有:
loga(MN)?logaM?logaN(1)Mloga?logaM?logaN(2)
NlogaMn?nlog(3)aM(n?R)证明⑴:设logaM=p, logaN=q. 由对数的定义可以得:M=a,N=a. ∴MN= aa=aN.
证明⑵:设logaM=p,logaN=q. 由对数的定义可以得M=a,N=a .
p
qp
qp?qp
q ∴logaMN=logaap?q ∴logaMN=p+q, 即证得logaMN=logaM + logaMMMMap?p?q ∴loga?p?q
对数与对数运算、对数函数教案(含答案)
对数与对数运算
一、
复习
1.对数的定义 logaN?b 其中 a?(0,1)?(1,??)与 N?(0,??) 2.指数式与对数式的互化 ab?N?logaN?b (a?0且a?1)
3.重要公式:
⑴负数与零没有对数; ⑵loga1?0,logaa?1 ⑶对数恒等式alogaN?N am?an?am?n(m,n?R)4.指数运算法则 (a)?amnmn(m,n?R) (ab)n?an?bn(n?R)二、新授内容
1.积、商、幂的对数运算法则:
如果 a > 0,a ? 1,M > 0, N > 0 有:
loga(MN)?logaM?logaN(1)Mloga?logaM?logaN(2)
NlogaMn?nlog(3)aM(n?R)证明⑴:设logaM=p, logaN=q. 由对数的定义可以得:M=a,N=a. ∴MN= aa=aN.
证明⑵:设logaM=p,logaN=q. 由对数的定义可以得M=a,N=a .
p
qp
qp?qp
q ∴logaMN=logaap?q ∴logaMN=p+q, 即证得logaMN=logaM + logaMMMMap?p?q ∴loga?p?q
对数与对数运算测试题
高一数学必修1
对数与对数运算@测试题
时间:50分钟 满分:100分
姓名 班级 学号 分数
(每小题5分,共30分)
1.下列指数式与对数式互化中错误的一组是
A.e
1与ln1 0
1
B.8
13
12
与log
1
8
2
13
C.log
3
9 2
与9
2
3
D.log
12
7
7 1与7 7
1
2.如果log7[log3(log2x)]=0,那么x等于( ) A.
3
2
1
B.
123
C.
122
D.
133
3.
5
log
5
( a)
(a≠0)化简得结果是( )
B.a2
C.|a|
D.a
A.-a
4.已知 ab=M (a>0, b>0, M≠1), 且logM b=x,则logM a=( )。 A.1-x B.1+x C. D.x-1
x1
5.若b≠1,则 loga b等于( )。 A.-logb a B.6.
loglog
82
lgalgb
C.lg b-lg a D.
1log
b
a
93
的值为( )。
1
32
A.2 B. C. D.
2
3
2
(每小题5分,共30分)
7.若logx (2+1)=-1, 则x 8.已知f(ex)=x,则f(5)等于。