排列组合特殊元素和特殊位置
“排列组合特殊元素和特殊位置”相关的资料有哪些?“排列组合特殊元素和特殊位置”相关的范文有哪些?怎么写?下面是小编为您精心整理的“排列组合特殊元素和特殊位置”相关范文大全或资料大全,欢迎大家分享。
3、3排列组合特殊问题解析
排列组合特殊问题解析
一、有重复问题
下列两例题尝试分类讨论列出所有类别。
例1、从3,4,5,6,7五个数字中,任意有放回地连续抽取三个数字,求下列事件的概率:
(1)三个数字完全不同; (2)三个数字中含3或5。 (3)三个数字中含3和5。
例2、(1)从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同的送法?
(2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?
二、分堆问题
例3、6本不同的书,按照以下要求处理,各有几种分法? ⑴ 一堆一本,一堆两本,一堆三本; ⑵ 甲得一本,乙得两本,丙得三本; ⑶ 一人得一本,一人得二本,一人得三本; ⑷ 平均分给甲、乙、丙三人; ⑸ 平均分成三堆.
例4、有6本不同的书
(1)分给甲1本、乙1本、丙4本,有多少种不同的分配方法? (2)分成3堆,有2堆各一本,另一堆4本,有多少种不同的分堆方法? (3)摆在3层书架上,每层2本,有多少种不同的摆法?
例5、按下列要求把12个人分成3个小组,各有多少种不同的分法? (1)各组人数分别为2,4,6人; (2)平均分成3个小组;
(3)平均分成3个小组,进入3个不同车间。
3、3排列组合特殊问题解析
排列组合特殊问题解析
一、有重复问题
下列两例题尝试分类讨论列出所有类别。
例1、从3,4,5,6,7五个数字中,任意有放回地连续抽取三个数字,求下列事件的概率:
(1)三个数字完全不同; (2)三个数字中含3或5。 (3)三个数字中含3和5。
例2、(1)从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同的送法?
(2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?
二、分堆问题
例3、6本不同的书,按照以下要求处理,各有几种分法? ⑴ 一堆一本,一堆两本,一堆三本; ⑵ 甲得一本,乙得两本,丙得三本; ⑶ 一人得一本,一人得二本,一人得三本; ⑷ 平均分给甲、乙、丙三人; ⑸ 平均分成三堆.
例4、有6本不同的书
(1)分给甲1本、乙1本、丙4本,有多少种不同的分配方法? (2)分成3堆,有2堆各一本,另一堆4本,有多少种不同的分堆方法? (3)摆在3层书架上,每层2本,有多少种不同的摆法?
例5、按下列要求把12个人分成3个小组,各有多少种不同的分法? (1)各组人数分别为2,4,6人; (2)平均分成3个小组;
(3)平均分成3个小组,进入3个不同车间。
排列组合学案 - 图文
高二数学集体备课学案与教学设计
章节标题 选修2-3 排列组合专题 计划学时 1 学案作者 杨得生 学案审核 张爱敏 高考目标 掌握排列、组合问题的解题策略 一、知识与技能 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 三维目标 二、过程与方法 通过问题的探究,体会知识的类比迁移。以已知探求未知,从特殊到一般的数学思想方法 三、情感态度与价值观 通过师生互动,生生互动的数学活动,形成学生的体验认识,并体验成功的喜悦。提高学习数学的兴趣,形成锲而不舍的钻研精神和合作交流的科学态度。 教学重点 重点:排列、组合综合题的解法. 教学难点难点:正确的分类、分步. 及 解决措施 教学要点 经 一、邮信问题:把4封信投入3个邮箱有多少种方法。 解析:这类问题首先分清哪个有限制条件,以有限制条件的为主体研究。(即典 指数形式, 例 有条件的为指数在上边无条件的在下边)如本题中的信有条件,即一封信只能投入一个信箱,所以,3种,3种,3种,3种。共34种。 题 练习:若A={a,b,
学而思小升初排列组合(排列组合三宝)
小升初计数重点考查内容———— 排列组合
1.排列组合的意义与计算方法
2.排列组合三宝:捆绑法、插空法、挡板法
(★★☆)
8月26日晚上师资组刚到蜜桃仙谷,大家都很兴奋。王雨洁、夏川、杨秀情、谷运增、崔兆玉、刘丽娜、兰海等高年级的七位老师想站在一块儿合个影,这个时候争执出现了: ⑴雨洁觉得:7个人随便站成一排,她认为这样简单公平;
⑵夏川认为:7个人可以站成两排,前3后4,这样看起来比较美观;
⑶兰海固执:自己必须站在正中间,因为自己的脑瓜长的比别人更圆一些; ⑷兆玉发言:自己和丽娜站两端,“我们俩宽度一样,这样比较对称” ⑸秀情老师:“我和阿增不站两端,其余的随便排,快点,不要磨叽!”
(★★☆)
高年级组的7位老师继续照相,这次排队有了新的讲究:雨洁、夏川、丽娜三位美女老师强烈要求必须相邻,任谁劝都不听,这时候只见摄像师老段拿着一根绳子嘿嘿阴笑着就走过来了:我能很快解决你们这样一共有几种排队方式的问题。
(★★☆)
刚才的事儿影响了照相的进度。嘿,在这段时间里老杨和谷老师打起来了,还把谷老师的耳朵给咬了……海哥在劝架的过程由于处理不当和老杨、谷老师同时起了矛盾,3人带着情绪照相,强烈要求:互不相邻(
排列组合典型例题
典型例题一
例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?
分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下:
如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二.
如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三.
如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四.
解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3
3个来排列,故有A9个;
当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一
11个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有A4. ?A8?A82(个)
∴ 没有重复数字的四位偶数有
311 A9?A4?A8?A82?504?179?2229个.6
3 解法2:当个位数上排“0”时,同解一有A9个;当个位数上排2
排列组合知识点和例题
1.分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法, ,在第n类办法中有mn种不同的方法,那么完成这件事共有N= n1+n2+n3+ +nM种不同的方法.
2.分步计数原理:完成一件事,需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法, ,做第n步有mn种不同的方法,那么完成这件事共有N=n1·n2·n3· nM 种不同的方法.
注:分类计数原理和分步计数原理是排列组合的基础和核心,既可用来推导排列数、组合数公式,也可用来直接解题。它们的共同点都是把一个事件分成若干个分事件来进行计算。只不过利用分类计算原理时,每一种方法都独立完成事件;如需连续若干步才能完成的则是分步。利用分类计数原理,重在分“类”,类与类之间具有独立性和并列性;利用分步计数原理,重在分步;步与步之间具有相依性和连续性.比较复杂的问题,常先分类再分步。
3. 排列的定义:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元......素的一个排列.
排列数的定义: 从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不
排列组合综合应用
华南师大数科院数学学校2016年春季班小学四年级加强班讲义
第九讲 排列组合综合应用
【内容概述】
乘法原理是指做一件事,完成它需要分成几个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法?做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×??×mn种不同方法(即每一步都不能单独完成这件事情,需要所有步骤合在一起才能完成这件事情)
加法原理是指做一件事,完成它可以有几类办法,在第一类办法中,有m1种不同的方法,在第二类办法中,有m2种不同的方法??在第n类办法中,有mn种不同的方法。那么完成这件事共有N=m1+m2+mn种不同方法。(即每一类办法都能独立完成,每一类与另一类不重复,所有这些类型合起来构成这个事情) 【典型题解】
例1 某人到食堂去买饭,食堂里有4种荤菜,3种素菜,2种汤,他要各买一样,共有多少种不同的买法?
【答案解析】根据题目条件可知,买饭可以分3个步骤。直接利用乘法原理计算。 不同的买法的种数:4?3?2?24(种)
练习一“IMO”是国际数学奥林匹克的缩写,把这三个字母用三种不同的颜色来写,现有五种不同颜色的笔,问共有多少种不同的写法?
【答案解析】根据题目条件可知,写完IMO可以分三个步骤,第
排列组合教案 - 图文
1.分类加法原理——(或)——不重不漏
2.分步乘法原理——(且)——步骤完整
3.排列(arrangement):
例1. 用0~9十个数字,可以组成多少个没有重复的数字的三位数? 有三种思路: ①
② 分三类 ③ 逆向思维
4.组合(combination): 由此
例2. 要从十七人中选出十一人组建足球队
(1)有多少种可能
(2)要是要选出一人出任守门员,有多少种不同的可能 两种方法
组合的性质:1.
2. 计算器:
(排列的另外一种理解)
(也即是大除法,去序)
5.二项式:
n个(a+b)相乘,不合并同类项,总共有多少项?
基础练习:
1.设有99本不同的书
(1) 分给甲、乙、丙3人,甲得96本,乙得2本,丙得1本,共有多少种不同的分法? (2) 分给甲、乙、丙3人,甲得93本,乙、丙各得3本,共有多少种不同的分法? (3) 平均分给甲、乙、丙3人,共有多少种不同的分法?
(4) 分给甲、乙、丙3人,一人得96本,一人得2本,一人得1本,共有多少种不同的
分法?
(5) 分给甲、乙、丙3人,一人得93本,另两人各得3本,共有多少种不同的分法? (6) 分成3份,一份9
排列组合问题经典题型
排列组合问题经典题型与通用方法
1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.
例1.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,则不同的排法有( )
A、60种 B、48种 C、36种 D、24种
2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.
例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )
A、1440种 B、3600种 C、4820种 D、4800种
1(,ij1,2?,3,4)例3.已知集合A?{1,2,3,?,19,20},集合B?{a1,a2,a3,a4},且B?A,若|ai?aj|?则满足条件的集合B有多少个?
3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.
,
例4.(1)A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻)那么不同的排法有( )
A、24种 B、60种 C、90种 D、120种
(2)由数字0,1,2,3,4,
概率与排列组合(1)
1. 如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部
分的概率为______.
2. .从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 。
?x?0?x?y?1?3.由不等式?y?0确定的平面区域记为?1,不等式?,确
?x?y??2?y?x?2?0?定的平面区域记为?2,在?1中随机取一点,则该点恰好在?2内的概率为( )
A.
1137 B. C. D. 84484. 6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )
A.144 B.120 C.72 D.24
5. 从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方
形边长的概率为( )
1234A. B. C. D. 55556. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能拍甲,则不同的排法共有
A.192种 B.216种 C.240种 D.288种
7. 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公
益活动的概率
A.