不定方程是哪个年级学的

“不定方程是哪个年级学的”相关的资料有哪些?“不定方程是哪个年级学的”相关的范文有哪些?怎么写?下面是小编为您精心整理的“不定方程是哪个年级学的”相关范文大全或资料大全,欢迎大家分享。

不定方程

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

六年级奥数 不定方程

【知识要点】

如果一个方程(组)的未知数的个数多于方程的个数,那么这个方程(组)就叫做不定方程(组)。 不定方程是数论中最古老的一个分支,它的研究在我国已延续了数千年,至今仍是令人感兴趣的课题。 不定方程的内容非常丰富,但在小学数学竞赛中,我们主要讨论二元一次不定方程,形如ax±by=c(a、b、c为已知的整数)的方程,我们称为二元一次不定方程,又称丢番图方程,以纪念生于公元三世纪的希腊数学家丢番图,他写了一本关于这类方程的书。

一个不定方程一般总有无穷多组解,但小学阶段主要涉及整系数不定方程的整数解。不定方程通常利用不等式及整除性来求解。 例1.

求3x+4y=23的自然数解。

练习一

1、 求3x+2y=25的自然数解。

2、 求4x+5y=37的自然数解。

3、 求5x-3y=16的最小自然数解。

例2

求下列方程组的正整数解。

5x+7y+3z=25 3x-y-6z=2

练习2

求下面方程组的自然数解。

1、 4x+3y-2z=7 2、 7x+9y+11z=68

3x+2y+4z=21 5x+7y+9z=52

不定方程和解不定方程应用题经典

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

1

不定方程

———研究其解法

方程,这个词对于同学们来说,再熟悉不过了,它在数学中占了很大的一个板块,许多题目都可以通过方程来得到答案,那么自然而然,它的解法就尤为重要了。 然而,我今天想为大家介绍的是一种特殊的方程——不定方程,因为它往往有多个或无数个解,他的解法相对较多较难,以下就是关于不定方程的一些问题。

一、不定方程是指未知数的个数多于方程个数的方程,其特点是往往有不唯一的解。 二、不定方程的解法 1、筛选试验法

根据方程特点,确定满足方程整数的取值范围,对此范围内的整数一一加以试验,筛去不合理的值。

如:方程x﹢y﹢z = 100共有几组正整数解?

解:当x = 1时y﹢z = 99,这时共有98个解:(y,z)为(1,98) (2,97)??(98,1)。 当x = 2时y﹢z = 98,这时共有97个解:(y,z)为(1,97) (2,96)??(97,1)。 ??

当 x = 98时,y﹢z = 2,这时有一个解。

∵ 98﹢97﹢96﹢??﹢1=

98?99= 4851 2∴ 方程x﹢y﹢z = 100共有4851个正整数解。

2、表格记数法

如:方程式4x﹢7 y =55共有哪些正

不定方程和解不定方程应用题经典

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

1

不定方程

———研究其解法

方程,这个词对于同学们来说,再熟悉不过了,它在数学中占了很大的一个板块,许多题目都可以通过方程来得到答案,那么自然而然,它的解法就尤为重要了。 然而,我今天想为大家介绍的是一种特殊的方程——不定方程,因为它往往有多个或无数个解,他的解法相对较多较难,以下就是关于不定方程的一些问题。

一、不定方程是指未知数的个数多于方程个数的方程,其特点是往往有不唯一的解。 二、不定方程的解法 1、筛选试验法

根据方程特点,确定满足方程整数的取值范围,对此范围内的整数一一加以试验,筛去不合理的值。

如:方程x﹢y﹢z = 100共有几组正整数解?

解:当x = 1时y﹢z = 99,这时共有98个解:(y,z)为(1,98) (2,97)??(98,1)。 当x = 2时y﹢z = 98,这时共有97个解:(y,z)为(1,97) (2,96)??(97,1)。 ??

当 x = 98时,y﹢z = 2,这时有一个解。

∵ 98﹢97﹢96﹢??﹢1=

98?99= 4851 2∴ 方程x﹢y﹢z = 100共有4851个正整数解。

2、表格记数法

如:方程式4x﹢7 y =55共有哪些正

不定方程选讲

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

不定方程选讲

一、一次不定方程(组)

1.求不定方程x+y+z=2007正整数解的个数。 2.求不定方程2x+3y+5z=15的正整数解。 3.解不定方程11x+15y=7。 4.解不定方程50x+45y+36z=10。

?5x+7y+2z=24,

5.解不定方程组?

?3x-y-4z=4.

6.解不定方程6x+15y+21z+9w=30。

7.求有多少个正整数对(m,n),使得7m+3n=102004,且m︱n。(04年日本数学奥林匹克) 二、二次不定方程及其常用解法

8.求满足方程2x2+5y2=11(xy-11)的正整数数组(x,y)。 9.解不定方程14x2-24xy+21y2+4x-12y-18=0。 10.解不定方程3x2+5y2=345。

11.解不定方程x2-5xy+6y2-3x +5y-11=0。 12.求方程xy-2x+y=4的整数解。

35

13求能使等式 + =1成立的所有正整数m,n。

mn14.求方程2xy-2x2+3x-5y+11=0的整数解。 15.求方程3xy+y2-6x-2y=2的整数解。 16.求方程x2+y= x2y-1000的正整数解。 17.求所有的整数对(x,y),使得x3 = y3+2y2 +1。

不定方程选讲

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

不定方程选讲

一、一次不定方程(组)

1.求不定方程x+y+z=2007正整数解的个数。 2.求不定方程2x+3y+5z=15的正整数解。 3.解不定方程11x+15y=7。 4.解不定方程50x+45y+36z=10。

?5x+7y+2z=24,

5.解不定方程组?

?3x-y-4z=4.

6.解不定方程6x+15y+21z+9w=30。

7.求有多少个正整数对(m,n),使得7m+3n=102004,且m︱n。(04年日本数学奥林匹克) 二、二次不定方程及其常用解法

8.求满足方程2x2+5y2=11(xy-11)的正整数数组(x,y)。 9.解不定方程14x2-24xy+21y2+4x-12y-18=0。 10.解不定方程3x2+5y2=345。

11.解不定方程x2-5xy+6y2-3x +5y-11=0。 12.求方程xy-2x+y=4的整数解。

35

13求能使等式 + =1成立的所有正整数m,n。

mn14.求方程2xy-2x2+3x-5y+11=0的整数解。 15.求方程3xy+y2-6x-2y=2的整数解。 16.求方程x2+y= x2y-1000的正整数解。 17.求所有的整数对(x,y),使得x3 = y3+2y2 +1。

TCL是哪个国家的

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

篇一:TCL产品简介

TCL 集 团 简 介

TCL集团股份有限公司创办于1981年,是目前国内最大的消费类电子集团之一。旗下拥有三家上市公司,分别是:TCL集团(SZ.000100)、TCL多媒体科技(HK.1070)、TCL通讯科技(HK.2618)。

总部位于中国南部惠州市的TCL集团,从20世纪90年代以来,连续多年保持高速增长,2004年全球营业收入近500亿人民币,5万5千多名雇员遍布全球145个国家。2004年,通过兼并重组汤姆逊彩电业务,成立TTE公司,一跃成为全球最大彩电企业,彩电销售近2300万台/年,居全球首位;TCL集团旗下手机业务,通过兼并阿尔卡特手机业务,也使其手机从国内第一品牌迅速拓展成覆盖欧洲、南美、东南亚和中国的全球性手机供应商。目前,TCL集团已形成以多媒体电子、移动通讯、数码电子为支柱,包括家电、核心部品(模组、芯片、显示器件、能源等)、照明电器和文化等产业在内的产业集群。

自2004年兼并重组汤姆逊彩电业务和阿尔卡特手机业务以来,TCL快速建立起覆盖全球市场的业务架构,集团下属产业在世界范围内拥有4个研发总部、18个研发中心和近20个制造基地和代加工厂,并在全球45个国家和地区设有销售组织,销售其旗下TCL、T

6年级奥数-不定方程

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

龍腾教育 非淡泊无以明志,非宁静无以致远! 龍腾学科教师辅导讲义

讲义编号 LTJYsxsrl005

学员编号:LTJY001 年 级:六年级 课时数:3 学员姓名: 王窈瑾 辅导科目:数学 学科教师:孙仁龙 学科组长签名及日期 课 题 授课时间:2015.01.15 教学目标 重点、难点 2015.01.14 教务长签名及日期 一次不定方程(组)的整数解问题 备课时间:2015.01.02 1.理解不定方程(组)的含义 2.掌握一次不定方程(组)的定理和相关解题方法 重点:不定方程定理的理解 难点:解不定方程方法与技巧的灵活运用 不定方程(组)是数论中的一个重要课题,不仅是数学竞赛,甚至在中考试卷中也常常出考点及考试要求 现. 教学内容 【写在前面】 不定方程(组)是数论中的一个重要课题,不仅是数学竞赛,甚至在中考试卷中也常常出现. 对于不定方程(组),我们往往只求整数解,甚至是只求正整数解,加上条

6年级奥数-不定方程

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

龍腾教育 非淡泊无以明志,非宁静无以致远! 龍腾学科教师辅导讲义

讲义编号 LTJYsxsrl005

学员编号:LTJY001 年 级:六年级 课时数:3 学员姓名: 王窈瑾 辅导科目:数学 学科教师:孙仁龙 学科组长签名及日期 课 题 授课时间:2015.01.15 教学目标 重点、难点 2015.01.14 教务长签名及日期 一次不定方程(组)的整数解问题 备课时间:2015.01.02 1.理解不定方程(组)的含义 2.掌握一次不定方程(组)的定理和相关解题方法 重点:不定方程定理的理解 难点:解不定方程方法与技巧的灵活运用 不定方程(组)是数论中的一个重要课题,不仅是数学竞赛,甚至在中考试卷中也常常出考点及考试要求 现. 教学内容 【写在前面】 不定方程(组)是数论中的一个重要课题,不仅是数学竞赛,甚至在中考试卷中也常常出现. 对于不定方程(组),我们往往只求整数解,甚至是只求正整数解,加上条

第12课 不定方程

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

2010届初一数学竞赛专题选讲

第12课 不定方程

【知识要点】 不定方程(组)是指未知数的个数大于方程个数的方程(组),这样的方程一般有无穷多组解,但我们一般仅研究其整数解或有理数解,对于实际问题,甚至只要求出正整数解。不定方程的理论与整除理论紧密相连,是数论中内容极其丰富的一个分支。最简单的不定方程是二元一次不定方程,形如ax+by=c ①,其中a,b,c都是已知的整数,且a,b不为0。

一般地,不定方程问题关心以下三个方面:(1)判断方程是否有整数解,如果有,求出一个解;(2)判断方程是否有无穷多个解;(3)求出方程的全部整数解。对方程①可以完全解决以上三个问题。

次数高于一次的不定方程,可以借助因式分解求解。

关于二元一次不定方程ax+by=c有无整数解,有下面的: 定理1:若二元一次不定方程ax+by=c中,a和b的最大公约数不能整除c,则方程没有整数解。 例如,方程2x+4y=5没有整数解。(想一想,为什么?) 定理2:如果正整数a,b互质,则方程ax+by=c有整数解。 例如,3x+5y=7,3与5互质,x=-1,y=2是这个方程的一组整数解。 定理3:如果(a,b)|

求不定方程整数解的常用方法

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

求不定方程整数解的常用方法

摘要:不定方程,是指未知数的个数多于方程的个数,且未知数受到某些限制的方程或方程组.因此,要求一个不定方程的全部的解,是相当困难的,有时甚至是不可能或不现实的.本文利用变量替换、未知数之间的关系、韦达定理、整除性、求根公式、判别式、因式分解等有关理论,求得一类不定方程的正整数解.通过一些具体的例子,给出了常用的不定方程的解法,分别为分离整数法、辗转相除法、不等式估值法、逐渐减小系数法、分离常数项的方法、奇偶性分析法、换元法、构造法、配方法、韦达定理、整除性分析法、利用求根公式、判别式、因式分解法等等.

关键字:不定方程;整数解;整除性

1引言

不定方程是数论的一个分支,有悠久的历史与丰富的内容,与其他数学领域有密切联系,是数论中的重要的、活跃的研究课题之一,我国对不定方程的研究以延续了数千年,“百钱百鸡问题”等一直流传至今,“物不知其数”的解法被称为中国剩余定理,学习不定方程,不仅可以拓宽数学知识面,而且可以培养思维能力,提高数学的解题技能.

中学阶段是学生的思维能力迅猛发展的关键阶段.在此阶段要注重培养学生的思维能力,开发学生智力,因此对于初等数论的一般方法、理论有一定的了解是必不可少的.让学生做题讲究