线性代数概念总结
“线性代数概念总结”相关的资料有哪些?“线性代数概念总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“线性代数概念总结”相关范文大全或资料大全,欢迎大家分享。
线性代数中的重要概念
特征矩阵
设A=方阵,则
叫做A的特征矩阵。 行列式是det(方程det(值。 性质
)=f()=0是
)是
的n次多项式,叫做A的特征多项式。
的n次方程,叫做A的特征方程,它的根叫做A的特征根或特征
设A=1) 2)
的n个特征值为 , , 则
)=det(
)
3) 若A与B相似,则det(
对角矩阵
除对角线上的元素外,其余的元素都是零的方阵,叫做对角矩阵。对角矩阵形如
性质
设A与B都是对角矩阵,K是数量,则A+B,KA都是对角矩阵。
单位矩阵
主对角线上的元素都是1,其余的元素都是零的n阶方阵,叫做n阶单位矩阵,记作E,即
性质 1) |E|=1
2) 若A是与E同阶的方阵,则有AE=EA=A
正交矩阵 如果 性质
1) 若A,B都是正交矩阵,则AB也是正交矩阵。 2) 若A是正交矩阵,则
也是正交矩阵。
(或
),则A叫做正交矩阵。
3) 若A是正交矩阵,则 detA=1或-1 (det为行列式) 4) 若 A=
是正交矩阵,则
U矩阵
如果 性质
(或 ),则A叫做U矩阵。
1) 若A,B都是U矩阵,则AB也是U矩阵。 2) 若A是U矩阵,则
也是U矩
线性代数复习总结
概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确
?A可逆 ??r(A)?n ??A的列(行)向量线性无关 ?A的特征值全不为0 A?0???Ax??只有零解 ?? ?x??,Ax?? ????Rn,Ax??总有唯一解 ?AT?A是正定矩阵 ?A?E ??A?p1p2???ps pi是初等阵??存在n阶矩阵B,使得AB?E 或 AB?E注:全体n维实向量构成的集合Rn叫做n维向量空间. ?A不可逆 ?r(A)?n A?0????A的列(行)向量线性相关 ??0是A的特征值 ??Ax??有非零
线性代数公式总结
线性代数
①A?B?B?A
②?A?B??C?A??B?C?
③c?A?B??cA?cB ?c?d?A?cA?dA ④c?dA???cd?A
⑤cA?0?c?0或A?0。 AT??T?A
T ?A?B??AT?BT
?cA?TT?cAT。
?? ?AB??BTAT
??n?n?1??21??Cn2?n?n?1? 2D?a21A21?a22A22???a2nA2n
T转置值不变A?A
逆值变A?1?1 AcA?cnA
?,?1??2,???,?1,???,?2,?
A???1,?2,?3?,3阶矩阵 B???1,?2,?3? A?B?A?B
A?B???1??1,?2??2,?3??3?
A?B??1??1,?2??2,?3??3 A?A0??AB 0B?BE?i,j?c???1
有关乘法的基本运算
Cij?ai1b1j?ai2b2j???ainbnj 线性性质 ?A1?A2?B?A1B?A2B, A?B1?B2??AB1?AB2 ?cA?B?c?AB??A?cB? 结合
线性代数复习总结
概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确
?A可逆 ??r(A)?n ??A的列(行)向量线性无关 ?A的特征值全不为0 A?0???Ax??只有零解 ?? ?x??,Ax?? ????Rn,Ax??总有唯一解 ?AT?A是正定矩阵 ?A?E ??A?p1p2???ps pi是初等阵??存在n阶矩阵B,使得AB?E 或 AB?E注:全体n维实向量构成的集合Rn叫做n维向量空间. ?A不可逆 ?r(A)?n A?0????A的列(行)向量线性相关 ??0是A的特征值 ??Ax??有非零
线性代数概念、性质、定理、公式整理
概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确
?A可逆 ??r(A)?n ?A的列(行)向量线性无关 ??A的特征值全不为0 ??Ax??只有零解 ? ?x??,Ax?? A?0?? n???R,Ax??总有唯一解 ??ATA是正定矩阵 ??A?E ?A?pp???p p是初等阵12si???存在n阶矩阵B,使得AB?E 或 AB?E注:全体n维实向量构成的集合R叫做n维向量空间. ○
n?A不可逆 ?r(A)?n ??A?0??A的列(行)向量线性相关
?0是A的特征值 ???Ax??有
线性代数
线性代数 第 1 次课
章节§1.1二阶与三阶行列式 §1.2全排列及其逆序数 名称 §1.3 n阶行列式的定义 目的要求 掌握二阶与三阶行列式的计算 理解n阶行列式的定义 序号 主 要 内 容 与 时 间 概 算 1 2 3 4 共计 主要内容 二元线性方程组与二阶行列式 三阶行列式 全排列及其逆序数 理解n阶行列式的定义 时间概算 20分钟 15分钟 15分钟 45分钟 95分钟 重点 用对角线法则进行二阶、三阶行列式的计算. 难点 理解n阶行列式的定义. 方法 板书 手段 课堂 二元线性方程组消元法. 三阶行列式的课堂练习计算结果 思 考 题 作 业 题 《最新线性代数习题全解》同济四版配套辅导. 王治军 主编 中国建材参考 工业出版社2003.8 资料 《线性代数》重点内容重点题 杨泮池 赵彦晖 褚维盘 编著 西安交通大学出版社,2004.3
提 问 本次课内学员基本掌握了本次课的内容, 达到了教学目的. 容总结 x已知f(x)?121xx3112x213,求x3的系数. 2x 练习册 练习一 线性代数 第 2 次课
章节§1.4对
线性代数
《线性代数》模拟试卷(一)
一. 一. 填空题(20/5)
1.已知A是5阶方阵,且|A|?2,则|A*|?____________.
2.设A?(aij)1?3,B?(bij)3?1,则B?A??______________.
3.设?1?(3,3,3),?2?(?1,1,?3),?3?(2,1,3),则?1,?2,?3线性_____关.
4.若A100?0,则(I?A)?1?_____________.
?12?5.设|A|?0,??2为A的特征值,则A有一特征值为_________,?A??3?有一特征值为__________.
二. 二. 选择填空(20/5)
?.1.设A,B为n阶对称矩阵,则下面四个结论中不正确的是?2?1A.A?B也是对称矩阵B.AB也是对称矩阵D.AB??BA?也是对称矩阵
C.Am?Bm(m?N?)也是对称矩阵
?A?0?2.设A和B都是n阶可逆矩阵,则(?2)??1????0B?A.(?2)2n|A||B|?1B.(?2)n|A||B|?1C.?2|A?||B|D.?2|A||B|?1
3.当n个未知量m个方程的齐次线性方程组满足条件??.
?时,此方程组一定有非零解.A.n
线性代数公式定理总结
1 / 35
第一章 行列式
1.逆序数 1.1 定义
n个互不相等的正整数任意一种排列为:i1i2???in,规定由小到大为标准次序,当某两个元素的先后次序与标准次序不
同时,就说有一个逆序数,该排列全部逆序数的总合用?数字的个数之和。 1.2 性质
一个排列中任意两个元素对换,排列改变奇偶性,即 ?2证明如下:
设排列为a1?alab1?bmbc1?cn,作m次相邻对换后,变成a1?alabb1?bmc1?cn,再作m?1次相邻对换后,变成a1?albb1?bmac1?cn,共经过2m?1次相邻对换,而对不同大小的两元素每次相邻对换逆序数要么增加1 ,要么减少1 ,相当于?2故原命题成立。
2.n阶行列式的5大性质
性质1:转置(行与列顺次互换)其值不变。 性质2:互换任意两行(列)其值变号。
性质3:任意某行(列)可提出公因子到行列式符号外。 性质4:任意行列式可按某行(列)分解为两个行列式之和。 性质5:把行列式某行(列)?倍后再加到另一行(列),其值不变。
行列式的五大性质全部可通过其定义证明;而以后对行列式的运算主要是利用这五个性质。
评 注 对性质4的重要拓展: 设n阶同型矩阵,
n?i1i2???in?表示,??
线性代数知识点总结
1. 二阶行列式--------对角线法则 :
2. 三阶行列式 ①对角线法则
②按行(列)展开法则
3. 全排列:n 个不同的元素排成一列。 所有排列的种数用 表示, = n !
逆序数:对于排列
…
,如果排在元素前面,且比大的元素个数有个,则这个元素的逆序数为。
整个排列的逆序数就是所有元素的逆序数之和。
奇排列:逆序数为奇数的排列。偶排列:逆序数为偶数的排列。n 个元素的所有排列中,奇偶各占一半,即 对换:一个排列中的任意两个元素对换,排列改变奇偶性.
4.
其中: 是1,2,3的一个排列,
t(
)是排列
的逆序数
5. 下三角行列式:
副三角跟副对角相识
对角行列式:
副对角行列式:
6. 行列式的性质: ①行列式与它的转置行列式相等. (转置:行变列,列变行)。D =
②互换行列式的两行(列),行列式变号。 推论 :两行(列)相同的行列式值为零。 互换两行:
③行列式的某一行(列)中的所有元素都乘以同一个数k ,等于用数 k 乘此行列式。第i 行乘k : x k 推论 :行列式中某一行(列)的公因子可以提到行列式符号外面
④行列式中如果有两行(列)元素成比例 ,则此行列式等于0
⑤若行列式的某一列(行)的元素都是两个元素和,则此行列式等于
线性代数重点知识总结
说明:1.本总结只是把课本的重点知识总结了一下,我没有看到期末考试题,所以考着了算是侥幸,考不着也正常。2.知识点会了不一定做的对题,所以还要有相应的练习题。3.前后内容要贯穿起来,融汇贯通,建立自己的知识框架。
第一章 行列式
1.行列式的定义式(两种定义式)-->行列式的性质-->对行列式进行行、列变换化为上下三角(求行列式的各种方法逐行相加、倒叙相减、加行加列、递推等方法,所有方法是使行列式出现尽可能多的0为依据的)。
2.行列式的应用——>克拉默法则(成立的前提、描述的内容、用途,简单的证明可从逆矩阵入手)。
总结:期末第一章可能不再单独考,但会在求特征值/判断正定性等内容时顺便考察行列式的求解。
第二章 矩阵
1.矩阵是一个数组按一定的顺序排列,和行列式(一个数)具有天壤之别。
2.高斯消元法求线性方程组的解—>唯一解、无解、无穷解时阶梯型的样子(与第三章解存在的条件以及解的结构联系在一起)
3.求逆矩阵的方法(初等变换法,I起到记录所有初等变换的作用)、逆矩阵与伴随矩阵的关系。
4.初等矩阵和初等变换的一一对应关系,学会由初等变换找出与之对应的初等矩阵。
5.分块矩阵(运用分块矩阵有时可以很简单的解决一些复杂问题)记得结论A可逆