圆锥曲线中的定点和定值问题

“圆锥曲线中的定点和定值问题”相关的资料有哪些?“圆锥曲线中的定点和定值问题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“圆锥曲线中的定点和定值问题”相关范文大全或资料大全,欢迎大家分享。

第4讲圆锥曲线的定点与定值问题

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

第四讲 圆锥曲线中的定点与定值问题 1.如图,过圆x2+y2=4与x轴的两个交点A、B作圆的切线AC、BD,过圆上任意一点H作圆的切线,交AC、BD与C、D两点,设AD、BC的y交点为R. D(1)求动点R的轨迹E的方程; H(2)过曲线E的右焦点作直线l 交曲线E于M、N两点,交yC轴与点P,记PM??1MF,PN??2NF.求证:λ1+ λ2是定值. (设点法)

2. 已知A、B分别是直线y?P是AB的中点.

(1)求动点P的轨迹C的方程;

(2)过点Q(1,0)作直线l(与x轴不垂直)与轨迹C交于M、N两点,与y轴交于点R.若

RAOBx33x和y?? x上的两个动点,线段AB的长为23,33RM??MQ,RN??NQ,证明:???为定值.(设直线方程法)

1

x2y2??1的左、右顶点为A、B,3. 在平面直角坐标系xoy中,如图,已知椭圆95右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1?0,y2?0.

(1)设动点P满足PF2?PB2?4,求点P的轨迹; (2)设x1?2,x2?13,求点T的坐标; (3)设t

高考圆锥曲线中及定点与定值问题(题型总结超全)

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

..

专题08 解锁圆锥曲线中的定点与定值问题

一、解答题

1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆离心率为

;圆

的左右焦点分别为

两点.

过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于

(Ⅰ)求椭圆的标准方程;

(Ⅱ)证明:在轴上存在定点,使得【答案】(1)

(2)

为定值;并求出该定点的坐标.

【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得

。设x轴上的定点为,可得

,由定值可得需满足

,解得可得定点坐标。

解得。

.

∴椭圆的标准方程为(Ⅱ)证明:

由题意设直线的方程为由设

消去y整理得

..

要使其为定值,需满足解得

.

.

故定点的坐标为

点睛:解析几何中定点问题的常见解法

(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意.

2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k的直线l经过点??1,0?与抛物

高考圆锥曲线中及定点与定值问题(题型总结超全)

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

..

专题08 解锁圆锥曲线中的定点与定值问题

一、解答题

1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆离心率为

;圆

的左右焦点分别为

两点.

过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于

(Ⅰ)求椭圆的标准方程;

(Ⅱ)证明:在轴上存在定点,使得【答案】(1)

(2)

为定值;并求出该定点的坐标.

【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得

。设x轴上的定点为,可得

,由定值可得需满足

,解得可得定点坐标。

解得。

.

∴椭圆的标准方程为(Ⅱ)证明:

由题意设直线的方程为由设

消去y整理得

..

要使其为定值,需满足解得

.

.

故定点的坐标为

点睛:解析几何中定点问题的常见解法

(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意.

2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k的直线l经过点??1,0?与抛物

圆锥曲线中的最值和范围问题

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

圆锥曲线专题:圆锥曲线中的最值和范围问题

热点透析

与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决:

(1)结合定义利用图形中几何量之间的大小关系;典型例题:<<考一本>>

(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;

(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。

(4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题;

(6)构造一个二次方程,利用判别式??0。 突破重难点

x2?y2?1上移动,试求|PQ|的最大值。 【例1】已知P点在圆x+(y-4)=1上移动,Q点在椭圆92

2

解:先让Q点在椭圆上固定,显然当PQ通过圆心O1时|PQ|最大,因此要求|PQ|的最大值,只要求|O1Q|

222

的最大值.设Q(x,y),则|O1Q|= x+(y-4) ①

22

因Q在椭圆上,则x=9(1-y) ②

1??将②代入①得|O1Q|= 9

圆锥曲线中的最值和范围问题

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

圆锥曲线专题:圆锥曲线中的最值和范围问题

热点透析

与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决:

(1)结合定义利用图形中几何量之间的大小关系;典型例题:<<考一本>>

(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;

(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。

(4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题;

(6)构造一个二次方程,利用判别式??0。 突破重难点

x2?y2?1上移动,试求|PQ|的最大值。 【例1】已知P点在圆x+(y-4)=1上移动,Q点在椭圆92

2

解:先让Q点在椭圆上固定,显然当PQ通过圆心O1时|PQ|最大,因此要求|PQ|的最大值,只要求|O1Q|

222

的最大值.设Q(x,y),则|O1Q|= x+(y-4) ①

22

因Q在椭圆上,则x=9(1-y) ②

1??将②代入①得|O1Q|= 9

圆锥曲线的定比分点

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

一、圆锥曲线的中点弦问题:

遇到中点弦问题常用“韦达定理”或“点差法”求解。在椭圆中,以

为中点的弦所在直线的斜率k=-;在双曲线中,以为

中点的弦所在直线的斜率k=;在抛物线中,以为中点的

弦所在直线的斜率k=

。比如:

①如果椭圆是 (答:

弦被点A(4,2)平分,那么这条弦所在的直线方程

);

②已知直线y=-x+1与椭圆相交于A、B两点,且线段AB的中

点在直线L:x-2y=0上,则此椭圆的离心率为_______(答:

);

③试确定m的取值范围,使得椭圆上有不同的两点关于直线对

称(答:

);

特别提醒:因为是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、

对称问题时,务必别忘了检验

二 圆锥曲线的几何性质:你了解下列结论吗?

(1)双曲线

的渐近线方程为

(2)以为渐近线(即与双曲线共渐近线)的双曲线方程为

为参数,≠0)。

如与双曲线有共同的渐近线,且过点的双曲线方程为_______(答:

(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为

(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为,焦准距(焦点到相

应准线的距离)为,抛物线的通径为,焦准距为;

(5)通径是所有焦点弦(过焦点的弦)中最短的弦; (6)若抛

圆锥曲线利用点的坐标解决圆锥曲线问题

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

第九章 利用点的坐标处理解析几何问题 解析几何

利用点的坐标处理解析几何问题

有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题。 一、基础知识:

1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理。然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与x1?x2,x1x2,y1?y2,y1y2相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐。所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段。 2、利用点坐标解决问题的优劣:

(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受

x1?x2,x1x2,y1?y2,y1y2形式的约束

(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点

直线与圆锥曲线-定点问题(教师版) - 图文

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

圆锥曲线中的定点问题

定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k和m的一次函数关系式,代入直线方程即可。技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。下面总结圆锥曲线中几种常见的几种定点模型:

模型一:“手电筒”模型

x2y2??1若直线l:y?kx?m与椭圆C相交于A,例题、(07山东)已知椭圆C:43B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证:直线l过定

点,并求出该定点的坐标。

解:设A(x1,y1),B(x2,y2),由??y?kx?m得(3?4k2)x2?8mkx?4(m2?3)?0, 223x?4y?12???64m2k2?16(3?4k2)(m2?3)?0,3?4k2?m2?0

8mk4(m2?3)x1?x2??,x1?x2?

3?4k23?4k23(m2?4k2)y1?y2?(kx1?m)?(kx2?m)?kx

圆锥曲线利用点的坐标解决圆锥曲线问题

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

第九章 利用点的坐标处理解析几何问题 解析几何

利用点的坐标处理解析几何问题

有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题。 一、基础知识:

1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理。然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与x1?x2,x1x2,y1?y2,y1y2相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐。所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段。 2、利用点坐标解决问题的优劣:

(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受

x1?x2,x1x2,y1?y2,y1y2形式的约束

(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点

2019版高考数学二轮复习 专题对点练24 圆锥曲线中的定点、定值与存在性问题 文

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

2019版高考数学复习专题突破练

专题对点练24 圆锥曲线中的定点、定值与存在性问题

1.已知动圆M恒过点(0,1),且与直线y=-1相切.

(1)求圆心M的轨迹方程;

(2)动直线l过点P(0,-2),且与点M的轨迹交于A,B两点,点C与点B关于y轴对称,求证:直线AC 恒过定点.

2.已知椭圆Γ:+y2=1(a>1)与圆E:x2+=4相交于A,B两点,且|AB|=2,圆E交y轴负半轴

于点D.

(1)求椭圆Γ的离心率;

(2)过点D的直线交椭圆Γ于M,N两点,点N与点N'关于y轴对称,求证:直线MN'过定点,并求该

定点坐标.

3.已知抛物线E:y2=4x的焦点为F,圆C:x2+y2-2ax+a2-4=0,直线l与抛物线E交于A,B两点,与圆C 切于点P.

(1)当切点P 的坐标为时,求直线l及圆C的方程;

(2)当a=2时,证明:|FA|+|FB|-|AB|是定值,并求出该定值.

1

2019版高考数学复习专题突破练

4.设点M是x轴上的一个定点,其横坐标为a(a∈R),已知当a=1时,动圆N过点M且与直线x=-1相切,记动圆N的圆心N的轨迹为C.

(1)求曲线C的方程;

(2)当a>2时,若直线l与曲线C相切于点P(x0,y0)(y0>0),且l