奥数盈亏问题解题思路
“奥数盈亏问题解题思路”相关的资料有哪些?“奥数盈亏问题解题思路”相关的范文有哪些?怎么写?下面是小编为您精心整理的“奥数盈亏问题解题思路”相关范文大全或资料大全,欢迎大家分享。
最值问题解题思路奥数
马到成功奥数专题:离散最值
引言:在国内外数学竞赛中,常出现一些在自然数范围内变化的量的最值问题,我们称之为离散最值问题。解决这类非常规问题,尚无统一的方法,对不同的题目要用不同的策略和方法,就具体的题目而言,大致可从以下几个方面着手: 1.着眼于极端情形; 2.分析推理——确定最值; 3.枚举比较——确定最值; 4.估计并构造。
离散最值问题渗透到小升初的各个奥数专题中,学好它可为解决数论,计数,应用问题等打下扎实的基础。
一、 从极端情形入手
从极端情形入手,着眼于极端情形,是求解最值问题的有效手段。
题目1. 一个布袋中有红、黄、绿三种颜色的小球各10个,这些小球的大小均相同,红色小球上标有数字“4”,黄色小球上标有数字“5”,绿色小球上标有数字“6”。小明从袋中摸出8个球,它们的数字和是39,其中最多可能有多少个球是红色的?
解:假设摸出的8个球全是红球,则数字之和为(4×8=)32,与实际的和39相差7,这是因为将摸出的黄球、绿球都当成是红球的缘故。
用一个绿球换一个红球,数字和可增加(6-4=)2,用一个黄球换一个红球,数字和可增加(5-4=)1。为了使红球尽可能地多,应该多用绿球换红
奥数 盈亏问题
盈亏问题
知识点:单位量=总量的盈亏差距÷单位分得的量的差 “分东西”总量和单位量一般是不变的
1.老师给同学们分卡片,如果每人5张,还剩18张,如果每人7张,就缺2张,请问:有多少个同学?一共有多少张卡片?
2.老猴子给小猴子分桃,每只小猴分10个桃,就多出9 个桃,每只小猴分11个桃,则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?
3.学校新近一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?
4.某小学少先队的同学到会议室开会,若每条长椅上坐3人则多出7人,若每条长椅上多坐4人则多出3条长椅,问:到会议室开会的少先队员有多少人?
5.军队分配宿舍,如果每间住3人,则多出20人,如果每间住6人,余下2人可以每人各住一个房间,现在每间住10人,可以空出多少个房间?
6.A、B 两人买了相同张数的信纸,A 在每个信封里装1 张信纸,最后用完所有的信封还剩40 张信纸,B 在每个信封里装3 张信纸,最后用完所有的信纸还剩40 个信封,他们都买了多少张信纸?
7.一个班的学生去划船,如果增加一条船,正好每
小学奥数第五讲 盈亏问题
小学奥数第五讲 盈亏问题
1 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?
2 妈妈买回一筐苹果,按计划吃的天数算了一下,如果每天吃4个,要多出48个苹果;如果每天吃6个,则又少8个苹果.那么妈妈买回的苹果有多少个?计划吃多少天?
3 学校规定上午8时到校,小明去上学,如果每分种走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小明几时几分离家刚好8时到校?由家到学校的路程是多少?
4 少先队员去植树.如果每人种5棵,还有3棵没人种;如果其中2人各种4棵,其余的人各种6棵,这些树苗正好种完.问有多少少先队员参加植树,一共种多少树苗?
5 红山小学学生乘汽车到香山春游.如果每车坐65人,则有5人不能乘上车;如果每车多坐5人,恰多余了一辆车,问一共有几辆汽车,有多少学生?
6.学校进行大扫除,分配若干人擦玻璃,其中两人各擦4块,其余各擦5块,则余12块;若每人擦6块,则正好擦完,求擦玻璃的人数及玻璃的块数?
家庭作业:
1.阿姨给幼儿园小朋友分饼干.如果每人分3块,则多出16块饼干;如果每人分5块,那么就缺4块饼干.问有多少小朋友,有多少块饼干?
2.某校
小升初奥数第17节:盈亏问题
盈亏问题
教学目的
1,让孩子了解语言的精密与数学的联系。2,掌握做题方法
教学内容
知识点
智慧湾
从前,一个农夫带了一只狗,一只兔子和一棵青菜,来到河边,他要把这三件东西带过河去。那儿仅有一只很小的旧船,农夫最多只能带其中的一样东西上船,否则就有沉船的危险。 刚开始,他带了菜上船,回头一看,调皮的狗正在欺侮胆小的兔子。他连忙把菜放在岸上,带着狗上船,但贪嘴的兔子又要吃鲜嫩的青菜,农夫只好又回来。他坐在岸边,看着这三件东西,静静地思索了一番,终于想出了一个渡河的办法。同学们,你知道农夫是怎么做的吗?
例题与巩固
题型一: 直接计算型盈亏问题
例1:五年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?
练习:明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?
例2:学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?
50道小学奥数经典题型解题思路及问题详解
实用文档
1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元? 解题思路:
由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。 答题:
解:一把椅子的价钱: 288÷(10-1)=32(元) 一张桌子的价钱: 32×10=320(元)
答:一张桌子320元,一把椅子32元。
2. 3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克? 解题思路:
可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。 答题:
解:45+5×3=45+15=60(千克)
文案大全
实用文档
答:3箱梨重60千克。
3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
解题思路:
根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。 答题:
解:4×2÷4=8÷4=2(千米) 答:甲每小时比乙快2千米。
4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支
五年级奥数盈亏问题
第12周 盈亏问题
例1 某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。乒乓球队共有多少名学生?
练 习 一
1,学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍。学校买来两种粉笔各多少盒?
2,操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;苦甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍。两堆货物一共有多少吨?
3,五(1)班的优秀学生中,若增加2名男生,减少1名女生,则男、女生人数同样多;若减少1名男生,增加1名女生,则男生是女生的一半。这些优秀学生中男、女生各多少人?
五 506995874.doc 1
例2 幼儿园老师拿出苹果发给小朋友。如果平均分给小朋友,则少4个;如果每个小朋友只发给4个,则老师自己也能留下4个。有多少个小朋友?共有多少个苹果?
练 习 二
1,给小朋友分梨,如果每人分4个,则多9个;如果每人分5个,则少6个。有多少个小朋友?有多少个梨?
2,老把一些铅笔奖给三好学生。每人5支则多
五年级奥数盈亏问题
奥数盈亏问题讲座及练习答案
盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会不足(亏),求物品的数量和分配对象的数量。
例如:
把一袋饼干分给小班的小朋友,每人分3块,多12块,;如果每人分4块,8块,小朋友有多少人?饼干有多少块?
这种一盈一亏的情况,就是这们通常说的标准的盈亏问题。
标准盈亏问题的基本数量关系式:
(盈+亏)÷两次分配之差=参与分配对象总数; 每次分得的数量×份数+盈=总数量; 每次分得的数量×份数-亏=总数量
还有一些非标准盈亏问题,如: 1、两盈:
两次分配都有余。数量关系式为:
(大盈-小盈)÷两次分配差=参与分配对象总数 2、两亏:
两次分配都不够。数量关系式为:
(大亏-小亏)÷两次分配差=参与分配对象总数
例1:
(一盈一亏问题)
一个植树小组,如果每人植5棵,还剩14棵;如果每人植7棵,就缺4棵。这个植树小组有多少人?一共有多少棵树? 分析:
由题意可知,植树的人数和棵数是不会变化的,只是两次分配的方案不一样,结果就差了18棵,即第一种方案的结果比第二种多18棵,这是因为两种分配
小学奥数第22讲 数字串问题(含解题思路)
22、数字串问题
【找规律填数】 例1 找规律填数
(杭州市上城区小学数学竞赛试题)
(1992年武汉市小学数学竞赛试题)
讲析:数列填数问题,关键是要找出规律;即找出数与数之间有什么联系。 第(1)小题各数的排列规律是:第1、3、5、??(奇数)个数分别
别是4和2。
第(2)小题粗看起来,各数之间好像没有什么联系。于是,运用分数
得到了
例2 右表中每竖行的三个数都是按照一定的规律排列的。按照这个规律在空格中填上合适的数。
(1994年天津市小学数学竞赛试题)
讲析:根据题意,可找出每竖行的三个数之间的关系。不难发现每竖行中的第三个数,是由前两数相乘再加上1得来的。所以空格中应填33。 【数列的有关问题】
数是几分之几?
(第一届《从小爱数学》邀请赛试题)
讲析:经观察发现,分母是1、2、3、4、5??的分数个数,分别是1、3、5、7、9??。所以,分母分别为1、2、3??9的分数共
例2 有一串数:1,1993,1992,1,1991,1990,1,1989,1988,?这个数列的第1993个数是______
(首届《现代小学数学》邀请赛试题)
讲析:把这串数按每三个数分
三年级奥数盈亏问题讲解
三年级奥数盈亏问题讲解
盈亏问题
解盈亏问题,常常用到比较法。
例1 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?
分析 比较两种搬砖法中各个量之间的关系:
每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差5-4=1(块)。
第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:7+2=9(块)
每人相差1块,结果总数就相差9块,所以有少先队员9÷1=9(人)。
共有砖:4×9+7=43(块)。
解:(7+2)÷(5-4)=9(人)
4×9+7=43(块)或 5×9-2=43(块)
答:共有少先队员9人,砖的总数是43块。
如果把例1中的“少2块砖”改为“多1块砖”,你能计算出有多少少先队员,有多少块砖吗?
由本题可见,解这类问题的思路是把盈余数与不足数之和看作采用两种不同搬法产生的总差数,被每人搬砖的差即单位差除,就可得出单位的个数,对这题来说就是搬砖的人数.
例2 妈妈买回一筐苹果,按计划吃的天数算了一下,如果每天吃4个,要多出4
浅谈鸡兔同笼问题解题思路
前面和大家探讨了一下盈亏问题的解题思路,很多家长给予了我很大的支持和鼓励,并且希望我再就鸡兔同笼问题继续探讨一下。既蒙各位抬爱,虽是瞽言萏议,也惟有敬陈管见了。(如孩子不明白这些成语,让孩子查查成语字典吧,算是语文作业)
鸡兔同笼问题的解法有很多,粗略搜索下就有列表法、画图法、假设法、抬腿法、方程法......等等不一而足。其中,列表法、画图法比较直观,但对稍微复杂点的题目就捉襟见肘了;抬腿法比较有趣,但适用性有些局限;方程法当然强大无比,但咱孩子学得是奥数啊……所以,还是着重探讨下假设法吧:
基本典型问题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
这是大约1500年前,《孙子算经》记录的问题,也是鸡兔同笼问题的基本典型例题。
鸡兔同笼的基本典型问题的解答思路并不复杂:一只鸡1个头2条腿,一只兔1个头4条腿。假设35个头全是鸡头,那么就应该有2×35=70条腿。而题目中条件为94条腿。现在用一只兔换一只鸡,头数没有变化,腿数由2条鸡腿变成了4条兔腿,也就是增加了2条腿。再重申下,用一只兔换一只鸡,头数不变,腿数增加2条。为了满足题目中94条腿的要求,需要增加94-70=24条腿,也就是要换24÷2=12只兔。由此可得,鸡为35