圆锥曲线的定比分点问题

“圆锥曲线的定比分点问题”相关的资料有哪些?“圆锥曲线的定比分点问题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“圆锥曲线的定比分点问题”相关范文大全或资料大全,欢迎大家分享。

圆锥曲线的定比分点

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

一、圆锥曲线的中点弦问题:

遇到中点弦问题常用“韦达定理”或“点差法”求解。在椭圆中,以

为中点的弦所在直线的斜率k=-;在双曲线中,以为

中点的弦所在直线的斜率k=;在抛物线中,以为中点的

弦所在直线的斜率k=

。比如:

①如果椭圆是 (答:

弦被点A(4,2)平分,那么这条弦所在的直线方程

);

②已知直线y=-x+1与椭圆相交于A、B两点,且线段AB的中

点在直线L:x-2y=0上,则此椭圆的离心率为_______(答:

);

③试确定m的取值范围,使得椭圆上有不同的两点关于直线对

称(答:

);

特别提醒:因为是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、

对称问题时,务必别忘了检验

二 圆锥曲线的几何性质:你了解下列结论吗?

(1)双曲线

的渐近线方程为

(2)以为渐近线(即与双曲线共渐近线)的双曲线方程为

为参数,≠0)。

如与双曲线有共同的渐近线,且过点的双曲线方程为_______(答:

(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为

(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为,焦准距(焦点到相

应准线的距离)为,抛物线的通径为,焦准距为;

(5)通径是所有焦点弦(过焦点的弦)中最短的弦; (6)若抛

圆锥曲线利用点的坐标解决圆锥曲线问题

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

第九章 利用点的坐标处理解析几何问题 解析几何

利用点的坐标处理解析几何问题

有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题。 一、基础知识:

1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理。然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与x1?x2,x1x2,y1?y2,y1y2相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐。所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段。 2、利用点坐标解决问题的优劣:

(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受

x1?x2,x1x2,y1?y2,y1y2形式的约束

(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点

圆锥曲线利用点的坐标解决圆锥曲线问题

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

第九章 利用点的坐标处理解析几何问题 解析几何

利用点的坐标处理解析几何问题

有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题。 一、基础知识:

1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理。然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与x1?x2,x1x2,y1?y2,y1y2相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐。所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段。 2、利用点坐标解决问题的优劣:

(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受

x1?x2,x1x2,y1?y2,y1y2形式的约束

(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点

第4讲圆锥曲线的定点与定值问题

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

第四讲 圆锥曲线中的定点与定值问题 1.如图,过圆x2+y2=4与x轴的两个交点A、B作圆的切线AC、BD,过圆上任意一点H作圆的切线,交AC、BD与C、D两点,设AD、BC的y交点为R. D(1)求动点R的轨迹E的方程; H(2)过曲线E的右焦点作直线l 交曲线E于M、N两点,交yC轴与点P,记PM??1MF,PN??2NF.求证:λ1+ λ2是定值. (设点法)

2. 已知A、B分别是直线y?P是AB的中点.

(1)求动点P的轨迹C的方程;

(2)过点Q(1,0)作直线l(与x轴不垂直)与轨迹C交于M、N两点,与y轴交于点R.若

RAOBx33x和y?? x上的两个动点,线段AB的长为23,33RM??MQ,RN??NQ,证明:???为定值.(设直线方程法)

1

x2y2??1的左、右顶点为A、B,3. 在平面直角坐标系xoy中,如图,已知椭圆95右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1?0,y2?0.

(1)设动点P满足PF2?PB2?4,求点P的轨迹; (2)设x1?2,x2?13,求点T的坐标; (3)设t

圆锥曲线热点问题

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

专题限时集训(十七)A

[第17讲 圆锥曲线热点问题]

(时间:10分钟+35分钟)

1.抛物线y=4x上一点到直线y=4x-5的距离最短,则该点的坐标是( )[来源:学科网ZXXK]

A.(1,2) B.(0,0) 1?C.??2,1? D.(1,4)

2.设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A,B两点,点Q与

→→→→

点P关于y轴对称,O为坐标原点,若BP=2PA,且OQ·AB=1,则点P的轨迹方程是( )

3

A.x2+3y2=1(x>0,y>0) 23

B.x2-3y2=1(x>0,y>0) 2

3

C.3x2-y2=1(x>0,y>0)

23

D.3x2+y2=1(x>0,y>0)

2

1x2y2

3.已知直线y=x与双曲线-=1交于A、B两点,P为双曲线上不同于A、B的点,

294

当直线PA,PB的斜率kPA,kPB存在时,kPA·kPB=( )

4A. 91B. 22C. 3

D.与P点位置有关

x2y2

4.设F1、F2分别是椭圆+=1的左、右焦点,P为椭圆上任一点,点M的坐标为

2516

(6,4),则|PM|+|PF1|的最大值为________.

2222

1.与两圆x+y=1及x+y-8x+12=0都

圆锥曲线问题总结答案

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

圆锥曲线问题总结答案

一、 圆锥曲线的定义及应用

例1:分析⑴可利用椭圆定义、三角形的三边间关系及不等式性质求最值;题⑵是圆锥曲线与数列性质的综合题,可根据条件先求出双曲线的半实轴长a的值,再应用双曲线的定义与等差中项的知识求|AB|的值.

解:⑴设椭圆右焦点为F1,则|MF|?|MF1|?6,∴|MA|?|MF|?|MA|?|MF1|?6.又 ?|AF1|?|MA|?|MF1|?|AF1|(当M、A、F1共线时等号成立).又

|AF1|?2,∴|MA|?|MF|?6?2, |MA|?|MF|?6?2.故|MA|?|MF|的最大值为6?2,最小值为6?2.

?2b?6?7?c ⑵依题意有??,解得a?23.∵A、B在双曲线的左支上,∴|AF2|?|AF1|?2a,

a2?222?c?a?b?|BF2|?|BF1|?2a,∴

|AF2|?|BF2|?(|AF1|?|BF1|)?4a.又

|AF2|?|BF2|?2|AB|,|AF1|?|BF1|?|AB|.

∴2|AB|?|AB|?4a,即|AB|?4a.∴|AB|?4?23?83.

小结:在本例的两个小题中,⑴正确应用相应曲线的定义至关重要,否则求解思路受阻;⑵忽视双曲线定义中的两

直线与圆锥曲线的综合问题

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

第32练 直线与圆锥曲线的综合问题

[题型分析·高考展望] 本部分重点考查直线和圆锥曲线的综合性问题,从近几年的高考试题来看,除了在解答题中必然有直线与圆锥曲线的联立外,在填空题中出现的圆锥曲线问题也经常与直线结合起来.本部分的主要特点是运算量大、思维难度较高,但有时灵活地借助几何性质来分析问题可能会收到事半功倍的效果.预测在今后高考中,主要围绕着直线与椭圆的位置关系进行命题,有时会与向量的共线、模和数量积等联系起来;对于方程的求解,不要忽视轨迹的求解形式,后面的设问将是对最值、定值、定点、参数范围的考查,探索类和存在性问题考查的概率也很高.

常考题型精析

题型一 直线与圆锥曲线位置关系的判断及应用

x2y2例1 (1)(2015·福建改编)已知椭圆E:2+2=1(a>b>0)的右焦点为F,短轴的一个端点为

ab4

M,直线l:3x-4y=0交椭圆E于A,B两点.若AF+BF=4,点M到直线l的距离不小于,5则椭圆E的离心率的取值范围是________________.

x2y22

(2)设焦点在x轴上的椭圆M的方程为+2=1 (b>0),其离心率为.

4b2①求椭圆M的方程;

②若直线l过点P(0,4),则直线l何时与椭圆M相交?

高二数学圆锥曲线的综合问题

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

常德市一中

高二数学备课组

1.解析几何的主要内容:

通过坐标用代数方法来研究几何图形的 一个数学分科,其中圆锥曲线作为研究曲线和 方程的典型问题,成了解几的主要内容。 2.本章的重点:①圆锥曲线的标准方程及简单几何性质。 ②以圆锥曲线为载体,综合考查正确理解 概念,严谨的逻辑推理,正确迅速的计算能力 运用数学思想方法分析问题和解决问题的能力

高考要求: 1.掌握椭圆定义、标准方程和椭圆的简单几 何性质,了解椭圆的参数方程。 2.掌握双曲线的定义、标准方程和双曲线的 简单几何性质。 3.掌握抛物线的定义、标准方程和抛物线的 简单几何性质。 4.能够根据具体条件利用各种不同的工具画 椭圆、双曲线、抛物线的图形,了解它们在实 际问题中初步应用。 5.结合所学内容,进一步加强对运动变化和 对立统一等观点的认识。

练习: y2 (-1,0) 1.抛物线 x 的焦点坐标是____ 47 y 2 2 x 1 2.抛物线 y 3x 的准线方程为___ 12

3.已知点A(-2,0)、B(3,0),动点P(x,y) 2 抛物线 满足 PA PB x ,则点P的轨迹是_____

x y 4.已知双曲线 2 2 1 的左、

圆锥曲线之轨迹问题(有答案)

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

圆 锥 曲 线 之 轨 迹 问 题

一、临阵磨枪

1.直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含x,y的等式就得到曲线的轨迹方程。这种求轨迹的方法称之为直接法。

2.定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线的定义),则可根据定义直接求出动点的轨迹方程。 3.坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。

4.参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标(x,y)中的x,y分别随另一变量的变化而变化,我们可以把这个变量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程,只要消去参变量即可。

5.

解圆锥曲线问题常用方法(一)

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

解圆锥曲线问题常用方法(一)

1、定义法

(1)椭圆有两种定义。第一定义中,r1+r2=2a。第二定义中,r1=ed1 r2=ed2。

(2)双曲线有两种定义。r1 r2 2a,当r1>r2时,注意r2的最小值为c-a:第二定义中,r1=ed1,r2=ed2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法

因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x1,y1),B(x2,y2),弦AB中点为M(x0,y0),将点A、B坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有