ansys热流固耦合分析
“ansys热流固耦合分析”相关的资料有哪些?“ansys热流固耦合分析”相关的范文有哪些?怎么写?下面是小编为您精心整理的“ansys热流固耦合分析”相关范文大全或资料大全,欢迎大家分享。
ansys流固耦合模态分析
ansys流固耦合模态分析
有问题可以发邮件给我一起讨论xw4996@
FSI流固耦合命令求解流固耦合问题
使用ANSYS计算结构在水中的模态时, FLUID29,FLUID30单元分别用来模拟二维和三维流体部分,相应的结构模型则利用PLANE42单元和SOL ID45等单元来构造,其中,PLANE42和SOL ID45分别是用来构造二维和三维结构模型的单元。FLUID30是流体声单元,主要用于模拟流体介质及流固耦合问题。该单元有8 个节点,每个节点上有4 个自由度,分别是XYZ上3个方向位移自由度和1个压力自由度,为各向同性材料。输入材料属性时,需要输入流体的材料密度(作为DENS 输入)及流体声速(作为SONC输入),流体粘性产生的损耗效应忽略不计。FLUID29是FLUID30单元在二维上的简化,少了一个Z向的位移。SOLID45单元用于构造三维实体结构。单元通过8 个节点来定义,每个节点有3 个沿着XYZ方向平移的自由度。PLANE42是SOLID45单元在二维上的简化。
在利用ANSYS建模分析时,流场域单元属性分为2种,由KEYOPT(2)(指定流体和结构分界面处结构是否存在) 控制,在流固耦合交界面上的单元KEYOPT(2) = 0 ,
ANSYS流固耦合分析实例命令流
ANSYS流固耦合分析实例命令流
达尔文档 DareDoc 分享知识 传播快乐 ANSYS流固耦合分析实例命令流
本资料来源于网络,仅供学习交流 2015年10月 达尔文档|DareDoc 整理
1
DareDoc
ANSYS流固耦合分析实例命令流
目 录
ANSYS流固耦合例子命令流 .......................................................................... 错误!未定义书签。 ANSYS流固耦合的方式 ..................................................................................................................... 3 一个流固耦合模态分析的例子1 ....................................................................................................... 3 一个流固耦合模态分析的例子2 ...............................
ansys workbench 流固耦合计算实例
Oscillating Plate with Two-Way Fluid-Structure Interaction
Introduction This tutorial includes:
? ? ? ? ? ?
Features
Overview of the Problem to Solve
Setting up the Solid Physics in Simulation (ANSYS Workbench)
Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre Obtaining a Solution using ANSYS CFX-Solver Manager Viewing Results in ANSYS CFX-Post
If this is the first tutorial you are working with, it is important to review the following topics before beginning:
? ?
Setting the Working Directory Cha
ANSYS电热耦合分析
一、 Electric-Thermal Analysis
ANSYS中电热耦合分析主要焦耳热效应(Joule heating)、塞贝克效应
(Seebeck effect)、珀尔帖效应(Peltier effect)、珀尔帖效应(Thomson effect)。我们这里的分析主要是Joule heating分析,即通电产生热量,用于加热双层薄片。
1. ANSYS电-热耦合知识点
1.1、Element DOFs选项:UX, UY, UZ, and TEMP:
可用于Thermal-Electric Analysis 的单元类型如上表所示,其中LINK68, PLANE67, SOLID69, and SHELL157 是专用的thermal-electric elements,专用于Joule heating effects,SOLID5, SOLID98, PLANE223, SOLID226, and SOLID227 则需要选择DOFs选项为TEMP and VOLT。
For SOLID5 or SOLID98, set KEYOPT(1) to 1;
For PLANE223, SOLID226, or SOLID227, set
ANSYS耦合场分析指南
ANSYS耦合场分析指南 第一章 耦合场分析
1.1耦合场分析的定义
耦合场分析是指考虑了两个或多个工程物理场之间相互作用的分析。例如压电分析,考虑结构和电场间的相互作用:求解由施加位移造成的电压分布或相反过程。其它耦合场分析的例子有热-应力分析,热-电分析,流体-结构分析。
需要进行耦合场分析的工程应用有压力容器(热-应力分析),流体流动的压缩(流体结构分析),感应加热(磁-热分析),超声波换能器(压电分析)以及磁体成形(磁-结构分析),以及微电机械系统(MEMS)等。 1.2耦合场分析的类型
耦合场分析的过程依赖于所耦合的物理场,但明显可以可分为两类:顺序耦合和直接耦合。
1.2.1 顺序耦合方法
顺序耦合方法包括两个或多个按一定顺序排列的分析,每一种属于不同物理场的分析。通过将前一个分析的结果作为载荷施加到第二个分析中的方式进行耦合。典型的例子是热-应力顺序耦合分析,热分析中得到节点温度作为“体载荷”施加到随后的应力分析中去。 1.2.2 直接耦合方法
直接耦合方法一般只涉及到一次分析,利用包括所有必要自由度的耦合场类型单元。通过计算包含所需物理量的单元矩阵或载荷向量的方式进行耦合。例如使用了SOLID5、PLANE13或SOLID98
舰船燃气涡轮叶片三维热流固耦合应力应变分析及寿命预测
第5卷第5期2010年10月中国舰船研究中国舰of船究ChineseJournalShip研ResearchVol.5No.5
第20Oct.105卷
doi:10.3969/j.issn.1673-3185.2010.05.013
舰船燃气涡轮叶片三维热流固耦合
应力应变分析及寿命预测
朱江江
杨自春
海军工程大学船舶与动力学院,湖北武汉430033
摘
要:为提高燃气轮机的可靠性、可用性以及可维护性而进行的寿命预估与减损控制研究,需要对燃气轮机
的关键零部件进行结构特性分析。对舰船燃气轮机涡轮叶片在紧急升工况载荷谱下的应力应变状态进行了三维热流固耦合有限元分析,针对典型载荷谱计算了涡轮叶片应力应变的变化规律,对涡轮叶片材料进行了控制应变试验,为叶片寿命预测提供了必要的参数。根据应力应变分析结果利用Basquin公式和Manson-Coffin公式计算了2个危险点处的疲劳裂纹起始寿命。并根据分析结果对涡轮叶片进行了寿命预测,预测结果可以作为燃气轮机使用维修的参考依据。
关键词:燃气涡轮叶片;热流固耦合;应变试验;疲劳寿命;裂纹中图分类号:TP202+.1
文献标志码:A
文章编号:1673-3185(2010)05-64-05
AnalysisandLifeCycle
浅谈流固耦合
作为流流合版块的版主,我感到惭愧。因为我几乎就没真正应用流固耦合做过工程。第一次应用流固耦合还要追溯到做硕士毕业论文的时候,当时做的是高压水射流切割,属于一个大课题中的小项。主要用的软件是fluent。但是利用fluent是没办法计算射流的切割效果的,流体软件只能计算流场参数(压力、速度、温度等),对于应力计算实在是力不从心。我不知道导师是从哪里听来的风声,说让使用mpcci将fluent与abaqus耦合计算固体变形乃至断裂。当时也是初生牛犊不怕虎,老师说用那就用呗,于是开始关注固体计算,关注abaqus,关注mpcci。然而现实是残酷的,流体与固体采用不同的计算网格(流体用欧拉网格,固体采用拉格朗日网格),对于断裂的问题,单纯采用abaqus勉强可算,然而耦合上流体之后,通常计算会以出现负体积而告终。多次的失败终于磨灭了导师的耐心,于是项目转而采用LS-DYNA的ALE进行解决,而我的毕业论文,则彻底的舍弃了这一部分。搞射流的自然离不开喷嘴的设计,在研究射流喷嘴结构在高压流体作用下的材料行为,于是又涉及到了流固耦合问题,这次很幸运,虽然压力很高,然而压差并不大,喷嘴的变形处于弹性小变形阶段,我采用workbench中的CFX+ANSYS
浅谈流固耦合
作为流流合版块的版主,我感到惭愧。因为我几乎就没真正应用流固耦合做过工程。第一次应用流固耦合还要追溯到做硕士毕业论文的时候,当时做的是高压水射流切割,属于一个大课题中的小项。主要用的软件是fluent。但是利用fluent是没办法计算射流的切割效果的,流体软件只能计算流场参数(压力、速度、温度等),对于应力计算实在是力不从心。我不知道导师是从哪里听来的风声,说让使用mpcci将fluent与abaqus耦合计算固体变形乃至断裂。当时也是初生牛犊不怕虎,老师说用那就用呗,于是开始关注固体计算,关注abaqus,关注mpcci。然而现实是残酷的,流体与固体采用不同的计算网格(流体用欧拉网格,固体采用拉格朗日网格),对于断裂的问题,单纯采用abaqus勉强可算,然而耦合上流体之后,通常计算会以出现负体积而告终。多次的失败终于磨灭了导师的耐心,于是项目转而采用LS-DYNA的ALE进行解决,而我的毕业论文,则彻底的舍弃了这一部分。搞射流的自然离不开喷嘴的设计,在研究射流喷嘴结构在高压流体作用下的材料行为,于是又涉及到了流固耦合问题,这次很幸运,虽然压力很高,然而压差并不大,喷嘴的变形处于弹性小变形阶段,我采用workbench中的CFX+ANSYS
浅谈流固耦合
作为流流合版块的版主,我感到惭愧。因为我几乎就没真正应用流固耦合做过工程。第一次应用流固耦合还要追溯到做硕士毕业论文的时候,当时做的是高压水射流切割,属于一个大课题中的小项。主要用的软件是fluent。但是利用fluent是没办法计算射流的切割效果的,流体软件只能计算流场参数(压力、速度、温度等),对于应力计算实在是力不从心。我不知道导师是从哪里听来的风声,说让使用mpcci将fluent与abaqus耦合计算固体变形乃至断裂。当时也是初生牛犊不怕虎,老师说用那就用呗,于是开始关注固体计算,关注abaqus,关注mpcci。然而现实是残酷的,流体与固体采用不同的计算网格(流体用欧拉网格,固体采用拉格朗日网格),对于断裂的问题,单纯采用abaqus勉强可算,然而耦合上流体之后,通常计算会以出现负体积而告终。多次的失败终于磨灭了导师的耐心,于是项目转而采用LS-DYNA的ALE进行解决,而我的毕业论文,则彻底的舍弃了这一部分。搞射流的自然离不开喷嘴的设计,在研究射流喷嘴结构在高压流体作用下的材料行为,于是又涉及到了流固耦合问题,这次很幸运,虽然压力很高,然而压差并不大,喷嘴的变形处于弹性小变形阶段,我采用workbench中的CFX+ANSYS
浅谈流固耦合
作为流流合版块的版主,我感到惭愧。因为我几乎就没真正应用流固耦合做过工程。第一次应用流固耦合还要追溯到做硕士毕业论文的时候,当时做的是高压水射流切割,属于一个大课题中的小项。主要用的软件是fluent。但是利用fluent是没办法计算射流的切割效果的,流体软件只能计算流场参数(压力、速度、温度等),对于应力计算实在是力不从心。我不知道导师是从哪里听来的风声,说让使用mpcci将fluent与abaqus耦合计算固体变形乃至断裂。当时也是初生牛犊不怕虎,老师说用那就用呗,于是开始关注固体计算,关注abaqus,关注mpcci。然而现实是残酷的,流体与固体采用不同的计算网格(流体用欧拉网格,固体采用拉格朗日网格),对于断裂的问题,单纯采用abaqus勉强可算,然而耦合上流体之后,通常计算会以出现负体积而告终。多次的失败终于磨灭了导师的耐心,于是项目转而采用LS-DYNA的ALE进行解决,而我的毕业论文,则彻底的舍弃了这一部分。搞射流的自然离不开喷嘴的设计,在研究射流喷嘴结构在高压流体作用下的材料行为,于是又涉及到了流固耦合问题,这次很幸运,虽然压力很高,然而压差并不大,喷嘴的变形处于弹性小变形阶段,我采用workbench中的CFX+ANSYS