关于基本不等式的高考题
“关于基本不等式的高考题”相关的资料有哪些?“关于基本不等式的高考题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“关于基本不等式的高考题”相关范文大全或资料大全,欢迎大家分享。
基本不等式高考题练习 菁优网
基本不等式高考题练习
一.选择题(共15小题) 1.(2014?重庆)若log4(3a+4b)=log2,则a+b的最小值是( ) A6+2 B7+2 C6+4 D7+4 . . . . 2.(2013?福建)若2x
+2y
=1,则x+y的取值范围是( ) A[0,2] B[﹣2,0] C[﹣2,+∞) D(﹣∞,﹣2] . . . . 3.(2013?山东)设正实数x,y,z满足x2
﹣3xy+4y2
﹣z=0.则当
取得最大值时,
的最大值为( A0 B1 CD3 . . . . 4.(2012?陕西)小王从甲地到乙地的往返时速分别为a和b(a<b),其全程的平均时速为v,则( ) Aa<v< Bv= C. . . <v< D. v= 5.(2011?重庆)已知a>0,b>0,a+b=2,则的最小值是( )
AB4 CD5 . . . . 6.(2011?重庆)若函数f(x)=x+(x>2),在x=a处取最小值,则a=( )
A1+ B1+ C3 D4 . . . . 7.(2010?重庆)已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是( ) A3 B4 C. . . D.
基本不等式教案
基本不等式
【教学目标】
1、掌握基本不等式,能正确应用基本不等式的方法解决最值问题
2、用易错问题引入要研究的课题,通过实践让同学对基本不等式应用的二个条件有进一步的理解
3、会应用数形结合的数学思想研究问题 【教学重点难点】
教学重点: 基本不等式应用的条件和等号成立的条件 教学难点:基本不等式等号成立的条件 【教学过程】
一、设置情景,引发探究 问题一:x?1有最小值吗? x2问题二:x?3?1x?32?2正确吗?
二、合作交流,研究课题
R中,a+b≥2ab,a+b≥?2ab,当且仅当a=b时取到等号。
2
2
2
2
a2?b2a?b2 R中,当且仅当a=b时取到等号。 ??ab?,1122?ab?注意:1、公式应用的条件 2、等号成立的条件 三、实例分析,深化理解 例1、求所给下列各式的最小值 (1)y?a?
1(a?3) a?31(a?3)?3?2?3?5,a?3
1当且仅当a?3??a?3?1?a?4时,ymin?5。a?3x2?2x?2(?1?x?1) (2)y?2x?2y?a?3?(x?1)2?1x?11 y???2(x?1)22(x?1)在(-1,0)上单调递减,在[0,1]上单调递增, 当且仅当
x?11
数学高考总复习:基本不等式与不等式的证明
数学高考总复习:基本不等式与不等式的证明
编稿:林景飞 审稿;张扬 责编:严春梅 知识网络
目标认知
考试大纲要求:
1. 了解基本不等式的证明过程,会用基本不等式解决简单的最大(小)值问题; 2.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: ①
; ②
;
3.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明.
4.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题.会用数学归纳法证明贝努 利不等式:
为大于1的正整数);了解当n为实数
时贝努利不等式也
成立.
5.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法等.
重点:
会用基本不等式、柯西不等式等解决简单的最大(小)值问题;了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法等.
难点:
利用基本不等式、柯西不等式求最大值、最小值,特别注意等号成立条件;不等式的证明。
知识要点梳理
知识点一:绝对值不等式的性质
1.
;
2.
;
知识点二:基本不等式
1、如果
那么
当且仅当
时取
基本不等式教案
基本不等式
【教学目标】
1、掌握基本不等式,能正确应用基本不等式的方法解决最值问题
2、用易错问题引入要研究的课题,通过实践让同学对基本不等式应用的二个条件有进一步的理解
3、会应用数形结合的数学思想研究问题 【教学重点难点】
教学重点: 基本不等式应用的条件和等号成立的条件 教学难点:基本不等式等号成立的条件 【教学过程】
一、设置情景,引发探究 问题一:x?1有最小值吗? x2问题二:x?3?1x?32?2正确吗?
二、合作交流,研究课题
R中,a+b≥2ab,a+b≥?2ab,当且仅当a=b时取到等号。
2
2
2
2
a2?b2a?b2 R中,当且仅当a=b时取到等号。 ??ab?,1122?ab?注意:1、公式应用的条件 2、等号成立的条件 三、实例分析,深化理解 例1、求所给下列各式的最小值 (1)y?a?
1(a?3) a?31(a?3)?3?2?3?5,a?3
1当且仅当a?3??a?3?1?a?4时,ymin?5。a?3x2?2x?2(?1?x?1) (2)y?2x?2y?a?3?(x?1)2?1x?11 y???2(x?1)22(x?1)在(-1,0)上单调递减,在[0,1]上单调递增, 当且仅当
x?11
基本不等式说课稿
学习必备 欢迎下载
一. 教材分析
1、教材地位和作用
本节是选自人教社普通高中课程实验标准 数学(必修5)《不等式》一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.同时也是为了以后学习(选修4—5)《不等式选讲》中的几种重要不等式,以及不等式的证明作铺垫,起着承上启下的作用。
本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节课可以培养学生应用数学知识灵活解决实际问题的能力,是学数学用数学的好素材。同时本节知识又渗透了数形结合、化归等重要数学思想,所以有利于培养学生良好的思维品质。
“基本不等式”在不等式的证明和求最值过程中有着广泛的应用。求最值是高考的热点。它在科学研究、经济管理、工程设计上都有广泛的作用。
2、教学目标 A.知识目标:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的
不等号“≥”取等号的条件.
B.能力目标:通过实例探究基本不等式;
C.情感目标:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣
3、教学重点、难点: a?b重点:应用数形结合的思想理解不等式,并从不同角度探索不等式ab?的证明过程;
2a?b难点:用基本不等式求最大最小值,
基本不等式说课稿(定稿)
篇一:获奖说课稿-基本不等式
《基本不等式》说课稿
各位评委老师,大家好,我说课的题目是《基本不等式》,本节课选自人教A版数学
必修5第三章第四节第一课时,我将从以下五个方面阐述我对这节课的设计: 一、教材分析
作为高中阶段必修的最后一部分内容,基本不等式具有丰富的实际背景.不但可以用来求某些函数的最值,同时也是证明不等式的理论依据,是高考考查的重点内容之一. 二、目标分析
教学目标:(1)探索基本不等式的证明过程;
(2)应用基本不等式解决简单最大(小)值问题
依据教学目标确定如下的重点、难点
重点: 应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程。
难点:利用基本不等式求最大值和最小值。 三、教学设计
1.引用2002年北京国际数学家大会会标并介绍弦图背景资料 设计意图:激发学生的学习兴趣,调动学生的积极性
探究1:图中有哪些相等关系和不等关系?
正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,设AE=a,BE=b,则正方形的面积为S=_,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它们的面积之和是S’=_
从图形中易得,s>s’,即 a?b?2ab
问题1:它们有相等的情况吗?何时相等?(学
基本不等式的教学反思
《基本不等式》的教学反思
一、教学目标
理解两个实数的平方和不小于它们之积的2倍的不等式的证明;理解两个正数的算术平均数不小于它们的几何平均数的证明以及它的几何解释
二、教学重点、难点
教学重点:两个不等式的证明和区别
教学难点:理解“当且仅当a=b时取等号”的数学内涵
三、教学过程
提问1:我们把“风车”造型抽象成图3.4-2.在正方形ABCD中有
4个全等的直角三角形.设直角三角形的长为a、b,那么正方形的边长为多少?面积为多少呢?
22a b)
提问2:那4个直角三角形的面积和是多少呢? (2ab )
提问3:根据观察4个直角三角形的面积和正方形的面积,我们
22可得容易得到一个不等式,a b 2ab。什么时候这两部分面积相等
呢?
(当直角三角形变成等腰直角三角形,即a b时,正方形EFGH
22变成一个点,这时有a b 2ab)
22ba b 2ab,当且仅a1、一般地,对于任意实数 、,我们有
当a b时,等号成立。
提问4:你能给出它的证明吗?
2222a b 2ab (a b)当a b时,(a b) 0 证明:
当a b时,(a b)2 0
22所以 a b 2ab
22注意强调 (1) 当且仅当a b时, a b 2ab
(2)特别地,如
基本不等式导学案
不等式导学案
教学目标:(1)学会推导不等式ab?a?b,理解不等式的几何意义。 2 (2)知道算术平均数、几何平均数的概念 (3)会用不等式求一些简单的最值问题 教学重点:基本不等式ab?a?b的推导及应用。 2教学难点:理解“当且仅当a?b时取等号” 的意义。 教学过程:
如图所示,这时我国古代数学家赵爽的弦图。在北京召开的24届国际数学家大会
上作为会标。你知道这其中含有哪些数学因素吗?
设小直角三角形的两条直角边为a、b,
则正方形的边长为 ,正方形的面积为 。
四个直角三角形的面积和为 。 4?S三角形?S正方形? < 。
思考:当中间的小正方形面积为0的时候,此时直角三角形是 , (4?S三角形?S正方形) 概念: 一般的,对于任意的实数a,b,我们有 ,当且仅当 时,等号成立.
特别的,如果a?0,b?0 ,我们用a、b
证明基本不等式的方法
2.2 证明不等式的基本方法——分析法与综合法
●教学目标:1、理解综合法与分析法证明不等式的原理和思维特点.
2、理解综合法与分析法的实质,熟练掌握分析法证明不等式的方法与步骤. ●教学重点:综合法与分析法证明不等式的方法与步骤
●教学难点:综合法与分析法证明不等式基本原理的理
●教学过程:
一、复习引入:
1、复习比较法证明不等式的依据和步骤?
2、今天学习证明不等式的基本方法——分析法与综合法
二、讲授新课:
1、综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法 综合法又叫顺推证法或由因导果法。
用综合法证明不等式的逻辑关系是: 例1、已知a,b,c是不全相等的正数,求证: . 分析:观察题目,不等式左边含有“a2+b2”的形式,我们可以创设运用基本不等式:a2+b2≥2ab;还可以这样思考:不等式左边出现有三次因式:a2b,b2c,c2a,ab2,bc2,ca2的“和”,右边有三正数a,b,c的“积”,我们可以创设运用重要不等式:a3+b3+c3≥3abc.(教师引导学生,完成证明)
解:∵a>0,b2+c2≥2bc ∴由不等式的性质定理4,得a(b2+c2)≥2abc.
基本不等式几大题型
题型1 基本不等式正用a+b≥2ab
1
例1:(1)函数f(x)=x+(x>0)值域为________;
x1
函数f(x)=x+(x∈R)值域为________;
x1
(2)函数f(x)=x2+2的值域为________.
x+11
解析:(1)∵x >0,x+≥2
x
1x·=2, x
∴f(x)(x >0)值域为[2,+∞);
当x∈R时,f(x)值域为(-∞,-2]∪[2,+∞); (2)x2+≥211
=(x2+1)+2-1 x+1x+1
21?x2+1?·2-1=1,
x+1
当且仅当 x=0 时等号成立.
答案:(1)[2,+∞) (-∞,-2]∪[2,+∞) (2)[1,+∞)
4
4.(2013·镇江期中)若x>1,则x+的最小值为________.
x-1
44
解析:x+=x-1++1≥4+1=5.
x-1x-14
当且仅当x-1=,即x=3时等号成立.
x-1答案:5
4
[例1] (1)已知x<0,则f(x)=2++x的最大值为________.
x (1)∵x<0,∴-x>0, 44
∴f(x)=2++x=2-?-x+?-x??.
x??
44
∵-+(-x)≥24=4,当且仅当-x=,即x=-2时等号成立.
x-x4
∴f(x)=2