解析几何中的存在性问题
“解析几何中的存在性问题”相关的资料有哪些?“解析几何中的存在性问题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“解析几何中的存在性问题”相关范文大全或资料大全,欢迎大家分享。
解析几何中的存在性问题
探究圆锥曲线中的存在性问题
1.求曲线(或轨迹)的方程。对于这类问题,高考常常不给出图形或不给出坐标系,以考察学生理解解析几何问题的基本思想方法和能力;
2.与圆锥曲线有关的最值(或极值)和取值范围问题,圆锥曲线中的定值、定点问题,探究型的存在性问题。这类问题的综合型较大,解题中需要根据具体问题、灵活运用解析几何、平面几何、平面向量、函数、不等式、三角函数知识,正确的构造不等式或方程,体现了解析几何与其他数学知识的联系。 一、是否存在这样的常数
x2例1.在平面直角坐标系xOy中,经过点(0,2)且斜率为k的直线l与椭圆?y2?1有两个不同的
2交点P和Q. (I)求k的取值范围;
(II)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量OP?OQ与
AB共线?如果存在,求k值;如果不存在,请说明理由.
解:(Ⅰ)由已知条件,直线l的方程为y?kx?2,
?1x22?2代入椭圆方程得?(kx?2)2?1.整理得??k?x?22kx?1?0 ①
?2?2直线l与椭圆有两个不同的交点P和Q等价于??8k?4?2?1??k2??4k2?2?0, ?2???2??222?∞,?,?∞?解得k??或k?.即k的取值范围为?.
浅谈解析几何中的对称问题
浅谈解析几何中的对称问题
解析几何中的对称问题在现行中学教材中没有按章节进行系统编排,只是分散地穿插在直线、曲线部分的题型之中。对称问题主要涉及四种类型:点关于点成中心对称;线(直线或曲线)关于点成中心对称;点关于线成轴对称;线(直线或曲线)关于线成轴对称。无论是解析几何的新授课还是复习课,几乎所有的老师都会对对称问题进行教学或复习,近几年对称问题也是高考的热点之一。这就要求教师对对称问题进行适当的归纳、总结,使学生对这部分知识有一个较完整、系统的认识,从而解决起对称问题才能得心应手。本人就此谈一下中学解析几何中常见的对称问题类型及解决方法。
一、中心对称:即关于点的对称问题
定义:把一个图形绕某个点旋转180o 后能与另一个图形重合,称这两个图形关于这个点对称。这个点叫做对称中心。
性质:关于某个点成中心对称的两个图形,对称点的连线都经过对称中心,且被对称中心平分。
1. 点关于点对称
例1. 求P (3,2)关于M (2,1)的对称点P ’的坐标。
分析:由中心对称的性质得M 点是PP ’的中点,可求P ’(1,0) 。
小结:P (x 0,y 0)???????→?的对称点,(关于点)b a M P ’(2a -x 0,2b -y 0)(依据中点坐标
2013年高考数学压轴大题训练:解析几何中的交汇性问题
一、解答题(共8小题,满分100分) 1.(14分)在平面直角坐标系xoy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.
(1)求抛物线C的标准方程;
(2)求过点F,且与直线OA垂直的直线的方程; (3)设过点M(m,0)(m>0)的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为f(m),求f(m)关于m的表达式.
2.(12分)(2012 天津)设椭圆圆上且异于A,B两点,O为坐标原点. (1)若直线AP与BP的斜率之积为
的左右顶点分别为A,B,点P在椭
,求椭圆的离心率;
.
(
2)若|AP|=|OA|,证明直线OP
的斜率k满足|k|>
3.(在直角坐标系xOy中,中心在原点O,焦点在x轴上的椭圆C上的点(2,1)到两焦点的距离之和为4. (1)求椭圆C 的方程;(2)过椭圆C 的右焦点F作直线l与椭圆C分别交于A、B两点,其中点A在x轴下方,且=3
.求过O、A、B三点的圆的方程.
4.(12分)如图所示,椭圆C:
2
的焦点为F1(0,c),F2
(0,﹣c)(c>0),抛物线x=2py(p>0)的焦点与F1重合,过F2的直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A,B两点,且(1)求证:切线l的斜率为定值;
2013年高考数学压轴大题训练:解析几何中的交汇性问题
一、解答题(共8小题,满分100分) 1.(14分)在平面直角坐标系xoy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.
(1)求抛物线C的标准方程;
(2)求过点F,且与直线OA垂直的直线的方程; (3)设过点M(m,0)(m>0)的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为f(m),求f(m)关于m的表达式.
2.(12分)(2012 天津)设椭圆圆上且异于A,B两点,O为坐标原点. (1)若直线AP与BP的斜率之积为
的左右顶点分别为A,B,点P在椭
,求椭圆的离心率;
.
(
2)若|AP|=|OA|,证明直线OP
的斜率k满足|k|>
3.(在直角坐标系xOy中,中心在原点O,焦点在x轴上的椭圆C上的点(2,1)到两焦点的距离之和为4. (1)求椭圆C 的方程;(2)过椭圆C 的右焦点F作直线l与椭圆C分别交于A、B两点,其中点A在x轴下方,且=3
.求过O、A、B三点的圆的方程.
4.(12分)如图所示,椭圆C:
2
的焦点为F1(0,c),F2
(0,﹣c)(c>0),抛物线x=2py(p>0)的焦点与F1重合,过F2的直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A,B两点,且(1)求证:切线l的斜率为定值;
解析几何证明问题
解析几何证明问题
x2y261、 已知椭圆T:2?2?1(a?b?0)的一个顶点A?0,1?,离心率e?,圆C:x2?y2?4,从圆C上任意一点
ab3P向椭圆T引两条切线PM,PN.
(1)求椭圆T的方程; (2)求证:PM?PN.
x2c6?y2?1 --------------4分 解:(Ⅰ) 由题意可知:b?1,?椭圆方程为:3a3 (Ⅱ)法1:(1) 当P点横坐标为?(2) 当P点横坐标不为?3时,PM斜率不存在,PN斜率为0,PM?PN----------5分
223时,设P(x0,y0),则x0?y0?4,设kPM?k
?y?y0?k(x?x0)?PM的方程为y?y0?k(x?x0),联立方程组 ?x2
2??y?1?322消去y得:(1?3k2)x2?6k(y0?kx0)x?3k2x0?6kx0y0?3y0?3?0 ------6分 22依题意:??0即??36k2(y0?kx0)2?41?3k23k2x0?6kx0y0?3y0?3?0 ---------8分 22化简得:(3?x0)k2?2x0y0k?1?y0?0
2221?y01?(4?x0)x0?3?????1 2223?x03?x03?x0
解析几何证明问题
解析几何证明问题
x2y261、 已知椭圆T:2?2?1(a?b?0)的一个顶点A?0,1?,离心率e?,圆C:x2?y2?4,从圆C上任意一点
ab3P向椭圆T引两条切线PM,PN.
(1)求椭圆T的方程; (2)求证:PM?PN.
x2c6?y2?1 --------------4分 解:(Ⅰ) 由题意可知:b?1,?椭圆方程为:3a3 (Ⅱ)法1:(1) 当P点横坐标为?(2) 当P点横坐标不为?3时,PM斜率不存在,PN斜率为0,PM?PN----------5分
223时,设P(x0,y0),则x0?y0?4,设kPM?k
?y?y0?k(x?x0)?PM的方程为y?y0?k(x?x0),联立方程组 ?x2
2??y?1?322消去y得:(1?3k2)x2?6k(y0?kx0)x?3k2x0?6kx0y0?3y0?3?0 ------6分 22依题意:??0即??36k2(y0?kx0)2?41?3k23k2x0?6kx0y0?3y0?3?0 ---------8分 22化简得:(3?x0)k2?2x0y0k?1?y0?0
2221?y01?(4?x0)x0?3?????1 2223?x03?x03?x0
用向量解决解析几何中角的有关问题
用向量解决解析几何中“角”的有关问题
同济二附中 钱嵘
向量(vector)又称矢量,即既有大小又有方向的量叫做向量。希腊的亚里士多德(前384-前322)已经知道力可以表示成向量,德国的斯提文(1548?-1620?)在静力学问题上,应用了平行四边形法则。伽利略(1564-1642)清楚地叙述了这个定律。稍后丹麦的未塞尔(1745-1818),瑞士的阿工(1768-1822)发现了复数的几何表示,德国高斯(1777-1855)建立了复平面的概念,从而向量就与复数建立了一一对应,这不但为虚数的现实化提供了可能,也可以用复数运算来研究向量。
向量是高中数学新教材与高中数学课程标准中新增内容,向量的应用是一种新的思想方法,由于常规视角的转变,形成了新的探索途径,容易激发并凝注学生的参与,探索新的解题途径,展示各自的思维能力和创新意识。
向量具有代数与几何形式的双重身份,它可以作为新旧知识的一个重要的交汇点,成为联系这些知识的桥梁,因此,向量与解析几何或三角的交汇是当今高考命题的必然趋势.
本文主要从“角”的角度关注了一些近年来与向量相关的高考题,浅析了一些命题趋势,希望为向量教学或复习带来一些帮助。 一.用来证明直线间的垂直关系
例题1. (20
解析几何
汤建良:《解析几何》课程教学大纲
深圳大学数学与计算科学学院
课程教学大纲
(2006年10月重印版)
课程编号 22143102
课程名称 解析几何
课程类别 专业必修
教材名称 解析几何
制 订 人 汤建良
审 核 人 刘则毅
2005年 4 月修订
- 1 -
汤建良:《解析几何》课程教学大纲
一、课程设计的指导思想
(一)课程性质 1.课程类别:专业必修课 2.适应专业:数学与应用数学专业(应用数学方向) 3.开设学期:第壹学期 4.学时安排:周学时3,总学时42 5.学分分配:3学分 (二)开设目的 解析几何是中学几何的继续与发展,既有深刻的数学理论意义,也有广泛的实际应用价值。在实际工程中的许多重要领域都有它的应用价值。通过本课程的学习,同学们还可以加深对中学三角和几何学的认识与理解,有助于解决一些初等数学问题。解析几何的一些思想方法在数学中具有普遍性。通过本课程的学习,能使学生提高数学素养,并为学习有关后继课程以及进一步扩大数学知识面奠定必要的数学基础。 (三)基本要求 掌握解析几何的基本理论与方法,深刻理解解
存在性问题
1、(12年.沈阳25题)已知,如图,在平面直角坐标系中,点A坐标为(-2,0),点B坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段OB于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=?2x2+mx+n的图象经过A,C两点.
(1) 求此抛物线的函数表达式; (2) 求证:∠BEF=∠AOE;
(3) 当△EOF为等腰三角形时,求此时点E的坐标;
(4) 在(3)的条件下,当直线EF交x轴于点D,P为(1) 中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG面积的(22?1) 倍.若存在,请直接写出点P的坐标;若不存在,请说明理由. ..
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.
2、(12毕节27) (本题16分)如图,直线l1经过点A(-1,0),直线l2经过点B(3,0), l1、l2均为与y轴交于点C(0,?3),抛物线y?ax2?bx?c(a?0)经过A、B、C三点。
(1)求抛物线的函数表达式;
(2)抛物线的对称轴依次与x轴交于点D、与l2交于点E、与抛物线交于点F、与l1交于点G。求证
第15讲 解析几何中的对称问题I学案
第十五讲.解析几何中的对称问题I
【教学目标】
1.掌握两点的中点坐标公式;
2.掌握一个点关于已知点的对称点坐标公式; 3.会求解点对称的相关问题
【知识、方法梳理】
1.若A(x1,y1),B(x2,y2),则AB的中点坐标是(x1?x2y1?y2,) 222.P(x,y)关于M(a,b)的对称点坐标是(2a?x,2b?y)
【典例精讲】
例1.已知点A(1,2),B(3,4),点M,N满足:M为AB中点,B为AN中点, (1)求M的坐标。 (2)求N的坐标。
例2.已知l1:x?y?3?0,l2:x?y?3?0,点P为直线l1上的动点,定点A(?1,4),当AP的中点M落在l2上的时候,求P的坐标
1 www.1smart.org 中国领先的高端教育连锁集团
,?1),当线段NP?例3.已知P为直线l:2x?y?3?0上的动点,P关于M(3,2)的对称点为P?,记N(2的长度为5的时候,求P的坐标
例4.直线l被两条直线l1:4x?y?3?0和l2:3x?5y?