三角形内切圆的圆心
“三角形内切圆的圆心”相关的资料有哪些?“三角形内切圆的圆心”相关的范文有哪些?怎么写?下面是小编为您精心整理的“三角形内切圆的圆心”相关范文大全或资料大全,欢迎大家分享。
三角形的内切圆和外接圆
--
-- 三角形外接圆半径的求法及应用
方法一:R =ab/(2h )
三角形外接圆的直径等于两边的乘积除以第三边上的高所得的商。
AD 是△A BC的高,AE 是△ABC 的外接圆直径.求证 AB ·AC=AE ·AD . 证:连接AO 并延长交圆于点E ,连接BE, 则∠AB E=90°.
∵∠E =∠C, ∠ABE =∠ADC=90°,
∴Rt △ABE ∽Rt △ADC ,
∴AC AE AD AB ,
∴ AB ·AC=AE ·AD
方法二:2R=a/S inA,a 为∠A 的对边
在锐角△A BC 中,外接圆半径为R 。求证: 2R=AB/Si nC
证:连接AO 并延长交圆于点E,连接BE, 则∠ABE=90°.
∴AE =AB/SinE
∵∠C =∠E,Sin C =S inE
∴AE=AB/Si nC
∴2R =AB/SinC
若C为钝角,则S inC =Sin (180o-C)
应用一、已知三角形的三边长,求它的外接圆的半径。
例1 已知:如图,在△ABC 中,AC =13,BC=14,AB =15,求△ABC 外接圆⊙O 的半径r.
分析:作出直径AD,构造Rt △A
初三数学《切线长定理及三角形内切圆》课时练习(附答案)
初三数学《切线长定理及三角形内切圆》课时练习(附答案)
《切线长定理及三角形内切圆》课时练习(附答案)
切线长定义:在经过圆外一点的圆的切线上,这点到切点之间的线段的长叫做这点到圆的切线长。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且圆心这点的连线平分两条切线的夹角。 即:∵PA、PB是的两条切线 ∴PA=PB, PO平分∠BPA 例题精选:
例1.如图,PA,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=60°.
(1)求∠BAC的度数;(2)当OA=2时,求AB的长. 例2、如图PA、PB是⊙O的切线,切点分别为A、B 、C是⊙O上一点,若∠APB=40°,求∠ACB的度数。
例3.如图,从⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,若PA=5cm,C是 AB上的一个动点(点C与A、B两点不重合),过点C作⊙O
的切线,分别交PA、PB于点D、E,求△PED的周长是多少? (例3图)(例4图)
例4如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的
⊙O与DC相切于
初三数学《切线长定理及三角形内切圆》课时练习(附答案)
初三数学《切线长定理及三角形内切圆》课时练习(附答案)
《切线长定理及三角形内切圆》课时练习(附答案)
切线长定义:在经过圆外一点的圆的切线上,这点到切点之间的线段的长叫做这点到圆的切线长。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且圆心这点的连线平分两条切线的夹角。 即:∵PA、PB是的两条切线 ∴PA=PB, PO平分∠BPA 例题精选:
例1.如图,PA,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=60°.
(1)求∠BAC的度数;(2)当OA=2时,求AB的长. 例2、如图PA、PB是⊙O的切线,切点分别为A、B 、C是⊙O上一点,若∠APB=40°,求∠ACB的度数。
例3.如图,从⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,若PA=5cm,C是 AB上的一个动点(点C与A、B两点不重合),过点C作⊙O
的切线,分别交PA、PB于点D、E,求△PED的周长是多少? (例3图)(例4图)
例4如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的
⊙O与DC相切于
三角形、等腰三角形以及全等三角形的证明
儒洋教育学科教师辅导讲义
学员姓名: 年 级: 课时数: 辅导科目: 学科教师: 课 题 授课时间: 教学目标 重点、难点 考点及考试要求 教学内容 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段:
(1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质
(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180°
(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。
4. 补充性质:在?ABC中,D是BC边上任意一点,E是AD上任意一点,则三角形、等腰三角形以及全等三角形的证明 备课时间: S?ABE?S?CDE?S
尺规作图-作三角形的外接圆内切圆--教学设计(王晓萍)
《尺规作图》
——作三角形的外接圆、内切圆
教 学 设 计
上饶县第七中学:王晓萍
电话:15979380864
《尺规作图》
——作三角形的外接圆、内切圆
【内容和内容解析】:
作三角形的外接圆和内切圆是五种基本尺规作图的综合运用。它是在学生已经掌握了线段的垂直平分线、角平分线、三角形的外接圆和内切圆知识之后对尺规作图能力的一个提升。此内容的教学重点是培养学生严谨的分析能力和严密的推理能力。整个教学中贯穿了转换、类比、归纳等数学思想方法,切实帮助学生规范数学语言能力以及提高了学生的审美观,更加强了学生对伟大数学家们的敬爱之情,体现数学在实际生活中的“真、善、美”。
通过这节内容的学习,学生对圆心的寻找和半径的求解会有个更清醒的认识,对五种基本作图更加熟悉,同时为后面四边形甚至多边形外接圆和内切圆的理解奠定坚实的基础。
本节课从淘宝引入尺规作图的定义,又从“破镜重圆”引发出问题1--- 作三角形的外接圆,再从如何使宝箱之门最大引出问题2---作三角形的内切圆。以宝箱和淘宝为线索,让学生发现问题--- 分析问题----解决问题,充分发挥学生的潜能,培养学生敏锐的数学眼光和综合的分析、概括能力,最大限度地挖掘了尺规作图的资
初中数学三角形(二)特殊三角形
三角形(二)——特殊三角形
【等腰三角形】
1.有两条边相等的三角形是等腰三角形,等腰三角形是轴对称图形。 2.等腰三角形的两个底角相等(简写成“等边对等角”)。
3.等腰三角形顶角的平分线平分底边并且垂直于底边。(常称为“三线合一”)。 4.如果一个三角形有两个内角相等,则它是等腰三角形。
姓 名: 【典型例题】
例1.已知?ABC中,那么?ABC一定是( ) ?B与?C的平分线的交点P恰好在BC边的高AD上, (A)直角三角形 (B)等边三角形 (C)等腰三角形 (D)等腰直角三角形
第12届(2001年)初二培训
例2.如图2,在?ABC中,AB=AC,∠A=36°,BD,CE分别平分∠ABC和∠ACB,它们相交于F点,是图中等腰三角形的个数是( )
第14届(2003年)初二培训
图2
例3.等腰三角形的一条腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( )。
图1
(A)30° (B)30°或150° (C)120°或150° (D)30°或120°或150°
第10届(1999年)初二第
三角形的分类
篇一:《三角形的分类》习题
《三角形的分类》习题
一、下面的说法,对的打“√”,错的打“×”。
1.有一个是锐角的三角形是锐角三角形。( )
2.直角三角形只有两个锐角。( )
3.如果一个三角形中最大的角小于90°,那么这个三角形一定是锐角三角形。( )
4.一个三角形不是锐角三角形,就是钝角三角形。( )
5.所有等边三角形都是等腰三角形而且都是锐角三角形。 ( )
6.由三条直线围成的图形叫做三角形。( )
7.在一个三角形中,不可能有两个或两个以上的直角。( )
8.在同一个三角形中,只能有一个角是钝角。( )
9.一个三角形中,至少有两个角是钝角。( )
10.两个角相等的三角形是等腰三角形。( )
11.等边三角形一定是锐角三角形。( )
12.三角形中最多有一个直角。( )
二、填空题。
1.三角形按角分类可分成( )三角形、( )三角形和( )三角形。
2.一个三角形中最大的角是锐角,这个三角形是( )三角形。
3.一个三角形中最大的角是120°,这个三角形是( )三角形。
4.你能给三角形分类吗:
三、选择。
1.三条边相等的三角形是( )三角形。
A.不等边B.等腰 C.等边
2.等腰三角形有( )条边相等。
A.1 B.2C.3
3.任何一个三角形至少有( )个锐角
三角形习题
三角形 综合习题
一、选择题
1.一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在 ( )
A.三角形内部 C.三角形外部
B.三角形的一边上 D.三角形的某个顶点上
2.下列长度的各组线段中,能组成三角形的是 ( ) A.4、5、6 C.5、7、12
B.6、8、15 D.3、9、13
3.在锐角三角形中,最大角α的取值范围是 ( ) A.0°<α<90° C.60°<α<180°
4.下列判断正确的是 ( )
A.有两边和其中一边的对角对应相等的两个三角形全等 B.有两边对应相等,且有一角为30°的两个等腰三角形全等 C.有一角和一条边对应相等的两个直角三角形全等 D.有两角和一边对应相等的两个三角形全等
5.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是( ) A.x<6 C.0<x<12
B.6<x<12 D.x>12
B.60°<α<90° D.60°≤α<90°
6.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A.则此三
角形 ( )
A.一定有一个内角为45° B.一定有一个内角为60° C.一定是直角三角形 D.一定是钝角三角形
7.三角
三角形的心
三角形的重心是三角形三条中线的交点。
三角形的三条中线必交于一点
已知:△ABC的两条中线AD、CF相交于点O,连结并延长BO,交AC于点E。
三角形的三条中线必交于一点
求证:AE=CE
证明:延长OE到点G,使OG=OB
∵OG=OB,∴点O是BG的中点 又∵点D是BC的中点∴OD是△BGC的一条中位线 ∴AD∥CG
∵点O是BG的中点,点F是AB的中点 ∴OF是△BGA的一条中位线 ∴CF∥AG
∵AD∥CG,CF∥AG,∴四边形AOCG是平行四边形 ∴AC、OG互相平分,∴AE=CE
三角形的重心的性质
1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:
(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3
5.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。
6.重心是三角形内到三边距离之积最大的点。
编辑本段二、三角形的外心
三角形的外心是三角形三条垂直平分线的交点(或
全等三角形
第十一章:全等三角形导学案
黑龙江省依兰县第一中学
11.1《全等三角形》导学案
【使用说明与学法指导】
1. 课前完成预习案,牢记基础知识,掌握基本题型,时间不超过15分钟。 2 .组内探究、合作学习完成《课内探究》不超过20分钟。
3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。 4.人人参与,合作学习,人人都有收获,人人都有进步。 5.带﹡的题要多动脑筋,展示你的能力。
一、学习目标:
1.理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。 2.掌握全等三角形的性质,并运用性质解决有关的问题。
3.会用符号表示全等三角形及他们的对应元素,培养大家的符号意识。
二、重点难点:运用全等三角形的性质解决相关的计算及证明等问题。 三、学习过程
《课前预习案》
(一)、自主预习课本2—3页内容,回答下列问题:
1、能够______________的图形就是全等图形, 两个全等图形的_________和________完全相同。
2、一个图形经过______、______、_________后所得的图形与原图形 。
3、把两个全等的三角形重合在一起,重合的顶点叫做