求函数最值的几种方法

“求函数最值的几种方法”相关的资料有哪些?“求函数最值的几种方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“求函数最值的几种方法”相关范文大全或资料大全,欢迎大家分享。

求函数值域的几种方法

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

求函数值域的几种方法

方法1:直接法(观察法)适用于较简单的函数,从解析式观察,利用

x 0, x 0, x 0 等,直接得出它的值域。2

例1、求下列函数的值域。(1) y x 72

(2) y 2 x 1, x 1, 2,3, 4,5 (3) y 3x 2

方法2、配方法适用于二次函数,同时要注意闭区间内的值域。 例2、求下列函数的值域。

(1) f ( x) x 4 x 12

(2) f ( x) x x 1

方法3、换元法对形如 y ax b cx d 型的函数均可用 “换元法”化为二次函数在区间上的值域问题求 解。 例3、求下列函数的值域。

(1) y x 1 x (2) y x x 1

方法4、分离常数法适用于分式型的函数。

例4、求下列函数的值域。

2x 1 (1) y x 3 2 2x 1 (2) y 2 x 1

方法5、判别式法能转化为 A(y)x2+B(y)x+C(y)=0 的函数常用判别式法求函 数的值域. dx2+ex+f 主要适用于形如 y = 2 (a, d不同时为零)的函数(最 ax +bx+c 好是满足分母恒不为零

求函数最值的方法总结

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

求函数最值的常用以下方法:

1.函数单调性法

先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种求解方法在高考中是必考的,且多在解答题中的某一问中出现.

1

例1 设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为,则a=________.

2【思路】 先判断函数在指定区间上的单调性,再求出函数的最值,然后利用条件求得参数a的值. 【解析】 ∵a>1,∴函数f(x)=logax在区间[a,2a]上是增函数,∴函数在区间[a,2a]上的最大值与最小值分1

别为loga2a,logaa=1.∴loga2=,a=4.故填4.

2

【讲评】 解决这类问题的重要的一步就是判断函数在给定区间上的单调性.这一点处理好了,以下的问题就容易了.一般而言,对一次函数、幂函数、指数函数、对数函数在闭区间[m,n]上的最值:若函数f(x)在[m,n]上单调递增,则f(x)min=f(m),f(x)max=f(n);若函数f(x)在[m,n]上单调递减,则f(x)min=f(n),f(x)max=f(m);若函数f(x)在[m,n]上不单调,但在其分成的几个子区间上是单调的,则可以采

求二元函数极限几种方法

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

1.二元函数极限概念分析

定义1 设函数f在D?R2上有定义,P0是D的聚点,A是一个确定的实数.如果对于任意给定的正数?,总存在某正数?,使得P?U0(PD时,都有 0;?) f(P)?A??,

则称f在D上当P?P0时,以A为极限,记limf(P)?A.

P?P0P?D上述极限又称为二重极限.

2.二元函数极限的求法

2.1 利用二元函数的连续性

命题 若函数f(x,y)在点(x0,y0)处连续,则

limf(x,y)?f(x0,y0).

(x,y)?(x0,y0)2 例1 求f(x,y)?x?2xy 在点(1,2)的极限. 2 解: 因为f(x,y)?x?2xy在点(1,2)处连续,所以

limf(x,y)x?1y?2?lim(x2?2xy)x?1y?2?12?2?1?2?5.

例2 求极限lim1.

?x,y???1,1?2x2?y2 解: 因函数在?1,1?点的邻域内连续,故可直接代入求极限,即

11=.

?x,y???1,1?2x2?y23lim1 / 15

2.2 利用恒等变形法

将二元函数进行恒等变形,例如分母或分子有理化等. 例3

精品数学讲义—求函数值域的几种方法

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

数学精品班培训试题 函数值域的几种求法

一、常用函数的值域,这是求其他复杂函数值域的基础。 1.函数y?kx?b(k?0,x?R)的值域为R;

2.二次函数y?ax2?bx?c(a?0,x?R) 当a?0时值域是[4ac?b,+?),

4a2当a?0时值域是(??,4ac?b];

24a3.反比例函数y?k(k?0,x?0)的值域为{y|y?0};

x4.指数函数y?ax(a?0,且a?1,x?R)的值域为R?; 5.对数函数y?logax(a?0,且a?1,x?0)的值域为R;

?6.函数y?sinx, y?cosx (x?R)的值域为[-1,1];函数y?tanx,x?k?? ,

2 y?cot x (x?k?,k?Z)的值域为R;

二、求值域的方法

1. 分析观察法求值域 有的函数结构并不复杂,可以通过基本函数的值域及不等式的性质观察出函数的值域。

1例1:求函数y?的值域。

2?x2解

2. 反函数法求值域 对于形如y?cx?d(a?0)的值域,用函数和它的反函数定义域ax?b和值域关系,通过求反函数的定义域从而得到原函数的值域。

例2 :求函数y?解

{y|y?R,且y?1}。

3x?1的值域。

关于矩阵求逆的几种方法

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

矩阵求逆的几种方法

关于矩阵求逆的几种方法

庄战友

(通辽实验中学,内蒙古通辽

摘要:矩阵求逆是高等代数中很重要的内容之一,本文介绍了矩阵求逆的几种方法。

关键词:逆矩阵初等变换伴随矩阵级数特征多项式

028000)

-1

阶矩阵A为可逆矩阵时,A=

*1*

A,其中A为矩阵A的伴随矩阵。|A|

a1%%%a2a1%%%a2

例2:设A=,若|A|==a1a4-a2a3≠0,则存在A

a3%%%a4a3%%%a4

1.定义法

定义:设A为n阶矩阵,如果存n在阶矩阵B使得AB=BA=I。则称矩阵A是可逆的,称B是A的逆矩阵。

%2%%%2%%3

例1:求矩阵A=%1%-1%%0的逆矩阵。

-1%%2%%1

-1

,且

%%1%a%%%-aA=%%|A|-a%%%%a

-1

4

21

3

%%

-1

解:因为|A|≠0,所以A存在。

用公式法求逆,当阶数较高时,计算量很大,所以该方法主要用于理论推导。

3.初等变换法

设n阶矩阵A,作n×2n矩阵,然后对此矩阵施以初等行变换,若把子块A变为In,则子块In将变为A,即初等行变换

同样也可以作2n×n矩阵变换,即

-1

x11%%x12%%x1333-1x21%%x22%%x233设A=3,由定义知AA=I,33x31%%x32%%x3333

C窗体间传值的几种方法

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

假设我们需要点击主窗体FMMain中的某一个按钮时打开子窗体FMChild并将某一个值传给子窗体FMChild,一般情况下,我们点击按钮显示子窗体FMChild的代码为: FMChild fmChild = new FMChild();

fmChild.ShowDialog();

fmChild.Dispose();

如果我们需要将主窗体FMMain中的string strValueA的值传给FMChild,那么我们首先对strValueA进行如下处理:

private string strValueA;

public string StrValueA

{

get

{

return strValueA;

}

set

{

strValueA = value;

}

}

使其成为主窗体FMMain的一个属性,接着修改显示子窗体的代码为以下两种的其中一种。 方法一:

FMChild fmChild = new FMChild();

fmChild.ShowDialog(this);

fmChild.Dispose();

方法二:

FMChild fmChild = new FMChild();

FMChild.Owner = this;

fmChild.ShowDialog();

fmChild.

利用几何知识求函数最值

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

利用几何知识求函数最值

数学与应用数学专业2011级 艾 英

摘要:解析几何是用代数研究几何,反过来,若能根据代数问题的结构特征,联想几何背景,建立解几模型,然后再利用解析几何的有关公式、性质、图形特征、位置关系探求解法。这对于开拓思路,提高和培养分析问题、解决问题的能力大有裨益。在下面我们就来探讨当所给函数具有某种几何意义时,求函数的最值采用建立解析几何基本模型的方法,把函数的最值转化为求两点间的距离,两点连线的斜率,点到直线的距离,直线的截距,定比分点公式,二次曲线等。通过上面的方法使我们在解决某些用代数方法解决函数最值中相当繁琐的问题简化。使解题变得更轻松。

关键字;解析几何;函数;最值;

Geometric kowledge seeking the most value function

Ludengrong

School of Mathematics, Mathematics and Information and Applied Mathematics 2006 Instructor: Zhang Sanhua

Abstract: Algebraic geometry analytic geometry is, i

求二次函数的最值教案

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

求二次函数的最值

教学目标: 1.知识与技能:

(1)掌握运用分类讨论和数形结合思想求二次函数的最值。 (2)会利用转化化归思想求解含参数二次函数的最值。 2.过程与方法:

(1)经历由轴定区间定到轴定区间动的类比推理,培养学生类比推理能力。

(2)结合图像与函数的知识进行分类讨论,求解二次函数的最值问题,提高学生的综合能力。 3.情感、态度与价值观:

(1)有机地渗透数形结合、化归等数学思想方法,培养学生良好的思维习惯。

(2)了解图像与函数的关系,进一步感受数形结合的基本思想。 教学重点:运用分类讨论和数形结合思想求二次函数最值 教学难点:求解含参数的二次函数最值 教学过程: 【考纲考情】

二次函数在高考中占有重要的地位,尤其利用二次函数处理最值问题在历年高考中都有不同程度的考查,因此在学习中应给予足够重视。本节课我们主要研究如何借助二次函数的图像和性质求最值。

【知识梳理】

二次函数的图像与性质 2y?ax?bx?c(a?0) (1)

y

对称轴x??b 2ab4ac?b2) 顶点坐标(?,2a4a 在????,??b??上单调递减, 2a?o x 在???b?,???上单调递增。 ?2a?y

求二次函数的最值教案

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

求二次函数的最值

教学目标: 1.知识与技能:

(1)掌握运用分类讨论和数形结合思想求二次函数的最值。 (2)会利用转化化归思想求解含参数二次函数的最值。 2.过程与方法:

(1)经历由轴定区间定到轴定区间动的类比推理,培养学生类比推理能力。

(2)结合图像与函数的知识进行分类讨论,求解二次函数的最值问题,提高学生的综合能力。 3.情感、态度与价值观:

(1)有机地渗透数形结合、化归等数学思想方法,培养学生良好的思维习惯。

(2)了解图像与函数的关系,进一步感受数形结合的基本思想。 教学重点:运用分类讨论和数形结合思想求二次函数最值 教学难点:求解含参数的二次函数最值 教学过程: 【考纲考情】

二次函数在高考中占有重要的地位,尤其利用二次函数处理最值问题在历年高考中都有不同程度的考查,因此在学习中应给予足够重视。本节课我们主要研究如何借助二次函数的图像和性质求最值。

【知识梳理】

二次函数的图像与性质 2y?ax?bx?c(a?0) (1)

y

对称轴x??b 2ab4ac?b2) 顶点坐标(?,2a4a 在????,??b??上单调递减, 2a?o x 在???b?,???上单调递增。 ?2a?y

求最值方法-高考数学复习

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

一问一答--------最值问题方法

总论

1高中数学求最值有哪些方法?

答:有9种方法:1)配方法 2)判别式法;3)不等式法;4)换元法;5)函数单调性法;6)三角函数性质法;7)导数法;8)数形结合发 ;9)向量法 2 如何将恒成立问题转化为最值问题?

答:1) a?f(x)恒成立,则a?f(x)max 2)a?f(x)恒成立,则a?f(x)min

一元整式函数最值

1、二次函数开口方向、对称轴、所给区间均确定,如何求最值?

答:1)确定对称轴与x轴交点的横坐标是否在所给区间。2)如果在所给区间,一个最值在顶点处取得,另一个最值在与顶点横坐标较远的端点处取得。3)若不在所给区间,利用函数的单调性确定其最值。

2、二次函数所给区间确定,对称轴位置变化,如何求最值?

答:1)移动对称轴,将对称轴平移到定区间的左侧、右侧及区间内讨论,2)在区间内,只考虑对称轴与区间端点的距离即可。

3、二次函数所给区间变化,对称轴位置确定,如何求最值?

答:分类讨论,分为四种情况:1)对称轴在闭区间左侧;2)对称轴在闭区间右侧3)对称轴在闭区间内且在中点的左侧;4)对称轴在闭区间内且在中点的右侧(或过中点); 4、二次函数所给区间、对称轴位置都不确定,如何求