浅谈泰勒公式高中数学中的应用
“浅谈泰勒公式高中数学中的应用”相关的资料有哪些?“浅谈泰勒公式高中数学中的应用”相关的范文有哪些?怎么写?下面是小编为您精心整理的“浅谈泰勒公式高中数学中的应用”相关范文大全或资料大全,欢迎大家分享。
浅谈高中数学在生活中的应用
浅谈高中数学在生活中的应用
摘要:数学是数与形的结合,即数字与图形化的语
言去描述生活中的问题,学习好数学就是为了能够更好地应
用于生活。新课标课程改革的目标就是让数学知识更好的融
入生活,在高中数学学习的过程中,如何将数学知识与实际生活相联系成为当前的焦点话题。本文将从生活中常见的
运用数学去解决实际问题出发,分析案例的形式阐述数学与
生活息息相关的关系。本文的目标是提高同学们学习数学的
热情,从而提高数学成绩,使数学的学习能够学以致用。
关键词:数学生活问题应用
中图分类号:G633.6 文献标识码: A 文章编号:1003-9082(2017)10-0-01
一、引言
在我们的生活中,处处存在数学知识。只要你留意,就
能发现。比如:增长率、企业成本与利润的核算、市场调查
与分析、比赛?龃伟才诺鹊龋辉偃缭谖颐侨粘J导噬?活中的存款、贷款、购物(房、车)、分期付款等几乎所有经济问题都可以归结为数列问题,它们都可以用等差数列和等比
数列函数来刻画。这些常见问题都可以感受到数学应用的广
泛性,并明确数学可以帮助他们更好地认识自然和人类社
会,更好地适应生活,有效进行表达和交流。在人们的日常实际生活中,等差数列、等比数列是表现日常经济生活有关规律的基本数学事例。掌握这些模型
浅谈问题导学法在高中数学教学中的应用
浅谈问题导学法在高中数学教学中的应用河北省石家庄市第四十五中学张海荣摘要:古人曾说过“授之以鱼,不如教人以渔”,也说过“授人一鱼,可供给一饭之需;教人一渔,则终生受用无穷。”内涵…一
教师所务。惟在启发导引。很好的体现出问题导学法的原理。教师教学的目的首先不是老师讲解书,而是引导学生看懂书理
解书。培养自己的自学能力、探究能力、解惑能力…实际问题的能力。关键词:高中数学一
一亦即通过培养学生的良好的求学素质,获得自学能力、探索能力、独立解决
问题导学“嫦娥一号“卫星开始谈起,畅谈我国的科技进步以及人造地球卫星的运行。问:“大家知道我们地球卫星如何运行呢?” 我们这时可谈卫星轨道是椭圆曲线,再联系到行星轨道等等。 此时,学生从通过内心爱国、爱科学的思想,慢慢产生了对椭圆知识学习动机,进而对数学整体知识产生兴趣。2、课堂中思索、研讨在二项式定理教学中,教学实录:那么在 ( a+ b)n的展开式中,大家能猜想出a、b的指数规律吗? s,C:a、b的指数规律…一 a的指数,从n逐一减少 No,且等于组合数的下标一上标;b的指数,从 0逐一增加到n,且等于组合数的上标.每一项a的指数与b的指数之和等于1 1 . T:牛顿有句名言: “没有大胆的猜想,就不能
浅谈问题导学法在高中数学教学中的应用
浅谈问题导学法在高中数学教学中的应用河北省石家庄市第四十五中学张海荣摘要:古人曾说过“授之以鱼,不如教人以渔”,也说过“授人一鱼,可供给一饭之需;教人一渔,则终生受用无穷。”内涵…一
教师所务。惟在启发导引。很好的体现出问题导学法的原理。教师教学的目的首先不是老师讲解书,而是引导学生看懂书理
解书。培养自己的自学能力、探究能力、解惑能力…实际问题的能力。关键词:高中数学一
一亦即通过培养学生的良好的求学素质,获得自学能力、探索能力、独立解决
问题导学“嫦娥一号“卫星开始谈起,畅谈我国的科技进步以及人造地球卫星的运行。问:“大家知道我们地球卫星如何运行呢?” 我们这时可谈卫星轨道是椭圆曲线,再联系到行星轨道等等。 此时,学生从通过内心爱国、爱科学的思想,慢慢产生了对椭圆知识学习动机,进而对数学整体知识产生兴趣。2、课堂中思索、研讨在二项式定理教学中,教学实录:那么在 ( a+ b)n的展开式中,大家能猜想出a、b的指数规律吗? s,C:a、b的指数规律…一 a的指数,从n逐一减少 No,且等于组合数的下标一上标;b的指数,从 0逐一增加到n,且等于组合数的上标.每一项a的指数与b的指数之和等于1 1 . T:牛顿有句名言: “没有大胆的猜想,就不能
高中数学公式汇总
1. 2.3.4.集合
个.
,.
.
的子集个数共有
个;真子集有
个;非空子集有
个;非空的真子集有
5.二次函数的解析式的三种形式 (1)一般式(2)顶点式(3)零点式4切线式:设为此式 6.解连不等式
常有以下转化形式
;
;当已知抛物线的顶点坐标
时,设为此式
时,设为此式
时,
;当已知抛物线与轴的交点坐标为
。当已知抛物线与直线
相切且切点的横坐标为
.
7.方程在内有且只有一个实根,等价于或。
8.闭区间上的二次函数的最值 二次函数具体如下: (1)当a>0时,若
,则
;
在闭区间
上的最值只能在
处及区间的两端点处取得,
,,.
(2)当a<0时,若,则,
若
9.一元二次方程
,则,
=0的实根分布
1
.
1方程2方程
在区间在区间
内有根的充要条件为内有根的充要条件为
或;
或或;
3方程在区间内有根的充要条件为或 .
10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间
的子区间形如
。
的子区间
。
(3) 在给定区间
。
(4) 在给定区间
。
对于参数及函数若若函数11.真值表 p q 真 真 真 假 假 真 假 假
2
,,不同上含参数的不等式(为参
数)恒成立的充要条件是(2)在给定区间
上含参数的不等式(为参数)恒成立的充要条件是
的子区间上
《高中数学常用公式总结》
《高中数学常用公式总结》 1、元素与集合的关系 2 、集合
的子集个数共有
个;真子集有 个.
个;
非空子集有个;非空的真子集有
3 、二次函数的解析式的三种形式: (1) 一般式: (2) 顶点式 : 坐标
时,设为此式)
(当已知抛物线与轴的交
时,设为此式)
。(当已知抛物线与直
(当已知抛物线的顶点
(3) 零点式: 点坐标为 (4)切线式: 线
相切且切点的横坐标为 时,
设为此式)
4、 真值表: 同真且真,同假或假
5 、常见结论的否定形式;
6 、四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)
充要条件: (1) 要条件;
(2)
且q ≠> p,则P是q的充分不必要条件;
,则P是q的必要不充分条
则P是q的充分条件,反之,q是p的必
(3) p ≠> p ,且 件;
(4)p ≠> p ,且
则P是q的既不充分又不必要条件。
7、 函数单调性:
增函数:(1)文字描述是:y随x的增大而增大。 (2)数学符号表述是:设f(x)在 若对任意的 则就叫
减函数:(1)、文字描述是:y随x的增大而减小。
高中数学教育教学论文 浅谈导数的应用
1 浅谈导数的应用
重视知识的发生发展过程,以能力立意,突出理性思
维是高考数学命题的指导思想。重视知识形成过程的思想和方法,在知识网络的交汇点设计考题是高考命题的创新主体。导数是新教材中新增内容。由于其应用的广泛性,为我们所学过的有关函数问题,曲线问题提供了一般性的方法,运用它可以简捷地解决一些实际问题。特别是新编教材对三角、复数等部分知识的删减,使导数的位置更加重要。由于新教材的导数在高中教材中的特殊地位,和新课程改革的不断深入,因而导数知识及其与其他知识的交汇备受高考的关注,已成为高考命题的新热点。
一、用导数求曲线的切线
导数的几何意义:函数y=f (x)在x=x 0处的导数,就是曲线
y=f(x)在点p (x 0 , f(x 0))处的切线的斜率,利用上述结论,可以求解曲线的切线及相关问题。
[例1](2003年全国高考题新课程卷)
已知抛物线c 1:y=x 2+2x 和c2:y=-x 2+a 如果直线l 同时是c 1和c 2的切线,称l 是c 1和c 2的公切线,当a 为何值时,c 1和c 2有且仅有一条公切线?写出公切线的方程。
解:函数y=x 2+2x 的导函数y ‘=2x+2
曲线c 1在点p (x 1,x 12+2x 1)的切线方程为:
高中数学教育教学论文 浅谈导数的应用
1 浅谈导数的应用
重视知识的发生发展过程,以能力立意,突出理性思
维是高考数学命题的指导思想。重视知识形成过程的思想和方法,在知识网络的交汇点设计考题是高考命题的创新主体。导数是新教材中新增内容。由于其应用的广泛性,为我们所学过的有关函数问题,曲线问题提供了一般性的方法,运用它可以简捷地解决一些实际问题。特别是新编教材对三角、复数等部分知识的删减,使导数的位置更加重要。由于新教材的导数在高中教材中的特殊地位,和新课程改革的不断深入,因而导数知识及其与其他知识的交汇备受高考的关注,已成为高考命题的新热点。
一、用导数求曲线的切线
导数的几何意义:函数y=f (x)在x=x 0处的导数,就是曲线
y=f(x)在点p (x 0 , f(x 0))处的切线的斜率,利用上述结论,可以求解曲线的切线及相关问题。
[例1](2003年全国高考题新课程卷)
已知抛物线c 1:y=x 2+2x 和c2:y=-x 2+a 如果直线l 同时是c 1和c 2的切线,称l 是c 1和c 2的公切线,当a 为何值时,c 1和c 2有且仅有一条公切线?写出公切线的方程。
解:函数y=x 2+2x 的导函数y ‘=2x+2
曲线c 1在点p (x 1,x 12+2x 1)的切线方程为:
高中数学公式汇总
皖西学院 计算机网络 程 坤
高中数学第一章-集合
榆林教学资源网 http://www.ylhxjx.com 考试内容:
集合、子集、补集、交集、并集.
逻辑联结词.四种命题.充分条件和必要条件. 考试要求: 榆林教学资源网 http://www.ylhxjx.com
(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.
§01. 集合与简易逻辑 知识要点
一、知识结构:
本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:
二、知识回顾:
(一) 集合
1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:
①任何一个集合是它本身的子集,记为A?A; ②空集是任何集合的子集,记为??A; ③空集是任何非空集合的真子集; 如果A?B,同时B?A,那么A = B. 如果A?B
高中数学公式大全
高中数学常用公式及常用结论
1. 元素与集合的关系
x?A?x?CUA,x?CUA?x?A. 2.德摩根公式
CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.
3.包含关系
A?B?A?A?B?B?A?B?CUB?CUA
?A?CUB???CUA?B?R
4.容斥原理
card(A?B)?cardA?cardB?card(A?B)
card(A?B?C)?cardA?cardB?cardC?card(A?B)
?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).
5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.
6.二次函数的解析式的三种形式
(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式
nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0
M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?. ?f(x)?NM?N8
高中数学公式大全
高中数学常用公式及常用结论
1. 元素与集合的关系
x?A?x?CUA,x?CUA?x?A. 2.德摩根公式
CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.
3.包含关系
A?B?A?A?B?B?A?B?CUB?CUA
?A?CUB???CUA?B?R
4.容斥原理
card(A?B)?cardA?cardB?card(A?B)
card(A?B?C)?cardA?cardB?cardC?card(A?B)
?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).
5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.
6.二次函数的解析式的三种形式
(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式
nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0
M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?. ?f(x)?NM?N8