勾股定理逆定理的应用教案
“勾股定理逆定理的应用教案”相关的资料有哪些?“勾股定理逆定理的应用教案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“勾股定理逆定理的应用教案”相关范文大全或资料大全,欢迎大家分享。
勾股定理的逆定理(简)
一、课题:勾股定理的逆定理 二、课时数:1课时
三、主备人:简远福 四、执教人:简远福
五、班级:八(5)班 六、授课时间:2015年3月23日第二节
七、本组备课成员:向利奎、吴明瑞、简远福
17.2 勾股定理的逆定理(1)
教学目标
1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理. 2.探究勾股定理的逆定理的证明方法.
3.理解原命题、逆命题、逆定理的概念及关系. 重点、难点
1.重点:掌握勾股定理的逆定理及证明. 2.难点:勾股定理的逆定理的证明. 3.难点的突破方法:
先让学生阅读课本第31页古埃及人制作三角形的方法,并要求学生做简单介绍,再动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.
为学生搭好台阶,扫清障碍.
⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.
⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.
⑶先做直角,再截
勾股定理及其逆定理 一
勾股定理及其逆定理 一、知识点
1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 2、勾股定理的逆定理:如果三角形的三边长:a、b、c有关系a+b=c,那么这个三角形是直角三角形。
2223、满足a?b?c的三个正整数,称为勾股数。
222
二、典型题型
1、求线段的长度题型 2、判断直角三角形题型 3、求最短距离 三、主要数学思想和方法(1)面积法.
例1已知 △ABC中,∠ACB=90°,AB=5㎝.BC=3㎝,CD⊥AB于点D,求CD的长.
(2)构造法.例8、已知:如图,在△ABC中,AB =15,BC =14,AC=13.求△ABC的面积.
(3)分类讨论思想.(易错题)
例3在Rt△ABC中,已知两边长为3、4,则第三边的长为 . 例4. 在△ABC中,AB=15,AC=20,BC边上的高线AD=12。试求BC的长。
例5、在△ABC中,AB=17,AC=10,BC边上的高等于8,则△ABC的周长为 . 练习: 1、在Rt△ABC中,已知两边长为5、12,则第三边的长为 2、等腰三角形的两边长为10和12,则周长为_
18.2 勾股定理的逆定理(1)-
www.czsx.com.cn
18.2 勾股定理的逆定理
从容说课
本节从古埃及人画直角的方法谈起,然后让学生画一些三角形(已知三边,并且两边的平方和等于第三边的平方).从而发现画出的三角形是直角三角形.猜想如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,即教科书中的命题2,把命题2的条件、结论与上节命题1的条件、结论作比较,?引出逆命题的概念.接着探究证明命题2的思路,用三角形全等证明命题2后,顺势引出逆定理的概念.
命题1,命题2属于原命题成立,逆命题也成立的情况.为了防止学生由此误认为原命题成立,逆命题一定成立,教科书特别举例说明有的原命题成立,逆命题不成立. 本节的重点是,如何用三角形三边之间的关系判断一个三角形是否为直角三角形.难点是会应用直角三角形判别方法解决实际问题,教学时要给学生充分交流的时间和空间,在学生学会自主学习.
18.2 勾股定理的逆定理(一)
教学时间 第5课时 三维目标 一、知识与技能
1.掌握直角三角形的判别条件. 2.熟记一些勾股数.
3.掌握勾股定理的逆定理的探究方法. 二、过程与方法
勾股定理及其逆定理 一
勾股定理及其逆定理 一、知识点
1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 2、勾股定理的逆定理:如果三角形的三边长:a、b、c有关系a+b=c,那么这个三角形是直角三角形。
2223、满足a?b?c的三个正整数,称为勾股数。
222
二、典型题型
1、求线段的长度题型 2、判断直角三角形题型 3、求最短距离 三、主要数学思想和方法(1)面积法.
例1已知 △ABC中,∠ACB=90°,AB=5㎝.BC=3㎝,CD⊥AB于点D,求CD的长.
(2)构造法.例8、已知:如图,在△ABC中,AB =15,BC =14,AC=13.求△ABC的面积.
(3)分类讨论思想.(易错题)
例3在Rt△ABC中,已知两边长为3、4,则第三边的长为 . 例4. 在△ABC中,AB=15,AC=20,BC边上的高线AD=12。试求BC的长。
例5、在△ABC中,AB=17,AC=10,BC边上的高等于8,则△ABC的周长为 . 练习: 1、在Rt△ABC中,已知两边长为5、12,则第三边的长为 2、等腰三角形的两边长为10和12,则周长为_
18.2 勾股定理的逆定理(1)
www.czsx.com.cn
18.2 勾股定理的逆定理
从容说课
本节从古埃及人画直角的方法谈起,然后让学生画一些三角形(已知三边,并且两边的平方和等于第三边的平方).从而发现画出的三角形是直角三角形.猜想如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,即教科书中的命题2,把命题2的条件、结论与上节命题1的条件、结论作比较,?引出逆命题的概念.接着探究证明命题2的思路,用三角形全等证明命题2后,顺势引出逆定理的概念.
命题1,命题2属于原命题成立,逆命题也成立的情况.为了防止学生由此误认为原命题成立,逆命题一定成立,教科书特别举例说明有的原命题成立,逆命题不成立. 本节的重点是,如何用三角形三边之间的关系判断一个三角形是否为直角三角形.难点是会应用直角三角形判别方法解决实际问题,教学时要给学生充分交流的时间和空间,在学生学会自主学习.
18.2 勾股定理的逆定理(一)
教学时间 第5课时 三维目标 一、知识与技能
1.掌握直角三角形的判别条件. 2.熟记一些勾股数.
3.掌握勾股定理的逆定理的探究方法. 二、过程与方法
勾股定理逆定理2导学案
黄州西湖中学 课题:勾股定理的逆定理(2)学习目标: 勾股定理逆定理的实际应用 学习重点: 勾股定理逆定理的应用 学习难点: 勾股定理逆定理的计算 学习过程: 一、课前预习 1、忆一忆 ⑴我们已经学习了勾股定理及其逆定理,你能叙述 吗? 命题一:_____________________________________ 命题二:_____________________________________ ⑵你能用勾股定理及其逆定理解决那些问题?
数学 学科导学案活页 授课教师:祝向奎三、合作探究:
年级
八
班级
学生
时间
学科组长:
教研组长:
5.某市在旧城改造中,计划在市内一块如图所示的三角 形空地上种植草皮以美化环境,已知这种草皮每平方米 问题 2:有一块菜地形状如下,试求它的面积。 售价 a 元,则购买这种 温馨提示: 草皮至少需要( ). ①结合题目的数据的图形特征你能想到哪些结论? A、450a B、225a 元 ②不规则图形的面积可以转化成规则图形的面积的和或 C、150a 元 D、300a 元 B 6. 已知在△ ABC 中, 差本题应如何转化?
12 C 3┗ 4 D四、分层训练 1、三角形的三边长 a,b,c 满足(a+b) 2 =c 2
勾股定理逆定理2导学案
黄州西湖中学 课题:勾股定理的逆定理(2)学习目标: 勾股定理逆定理的实际应用 学习重点: 勾股定理逆定理的应用 学习难点: 勾股定理逆定理的计算 学习过程: 一、课前预习 1、忆一忆 ⑴我们已经学习了勾股定理及其逆定理,你能叙述 吗? 命题一:_____________________________________ 命题二:_____________________________________ ⑵你能用勾股定理及其逆定理解决那些问题?
数学 学科导学案活页 授课教师:祝向奎三、合作探究:
年级
八
班级
学生
时间
学科组长:
教研组长:
5.某市在旧城改造中,计划在市内一块如图所示的三角 形空地上种植草皮以美化环境,已知这种草皮每平方米 问题 2:有一块菜地形状如下,试求它的面积。 售价 a 元,则购买这种 温馨提示: 草皮至少需要( ). ①结合题目的数据的图形特征你能想到哪些结论? A、450a B、225a 元 ②不规则图形的面积可以转化成规则图形的面积的和或 C、150a 元 D、300a 元 B 6. 已知在△ ABC 中, 差本题应如何转化?
12 C 3┗ 4 D四、分层训练 1、三角形的三边长 a,b,c 满足(a+b) 2 =c 2
“勾股定理逆定理”课堂教学心得
“勾股定理逆定理”课堂教学心得
在从教的十二年教学工作,我发现勾股定理的逆定理的讲解十分抽象,但在今年的教学中我采用一种新的教学方法,效果十分明显,现在我将往年的传统教学方法,与现在教学方式对比如下。 传统教学过程设计
一、 课堂引入 [活动1]实践
1.把准备好的一根打了13个等距离结的绳子,按3个结、4个结、5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状?
2.分别以2.5cm、6cm、6.5cm和4cm、7.5cm、8.5cm为三边画出两个三角形,请观察并说出此三角形的形状?
3.结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?
[在活动1中教师应重点关注:
(1)学生在活动中的参与意识和动手能力;
(2)是否清楚三角形的三边长度的平方关系是因,直角三角形是果,即先有数,后有形.
(3)数形结合的数学思想方法及归纳能力.]
[活动2] 问题
1.三边长度分别为3 cm、4 cm、5 cm的三角形与以3cm、4cm为直角边的直角三角形之间有什么关系?你是怎样得到的?
2.你能证明以2.5cm、6cm、6.5cm为三边长的三角形是直角三角形吗?
“勾股定理逆定理”课堂教学心得
“勾股定理逆定理”课堂教学心得
在从教的十二年教学工作,我发现勾股定理的逆定理的讲解十分抽象,但在今年的教学中我采用一种新的教学方法,效果十分明显,现在我将往年的传统教学方法,与现在教学方式对比如下。 传统教学过程设计
一、 课堂引入 [活动1]实践
1.把准备好的一根打了13个等距离结的绳子,按3个结、4个结、5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状?
2.分别以2.5cm、6cm、6.5cm和4cm、7.5cm、8.5cm为三边画出两个三角形,请观察并说出此三角形的形状?
3.结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?
[在活动1中教师应重点关注:
(1)学生在活动中的参与意识和动手能力;
(2)是否清楚三角形的三边长度的平方关系是因,直角三角形是果,即先有数,后有形.
(3)数形结合的数学思想方法及归纳能力.]
[活动2] 问题
1.三边长度分别为3 cm、4 cm、5 cm的三角形与以3cm、4cm为直角边的直角三角形之间有什么关系?你是怎样得到的?
2.你能证明以2.5cm、6cm、6.5cm为三边长的三角形是直角三角形吗?
Desargues定理及其逆定理的应用
一.Desargues定理及其逆定理的应用
Desargues定理的内容从完整的角度讲,包括Desargues定理及其逆定理。它是高等几何中最重要的定理之一,高等几何中许多定理及命题都以它为根据。我们知道,在初等几何中有许多需要证明“点共线”或“线共点”的问题,这类问题用初等方法去证明往往较复杂,但用Desargues定理去证明却很容易。因此,对于初等几何中的某些定理或命题而言,Desargues定理除可以给它们提供一种高等数学的证明方法外,还可以在用初等方法证明它们之前,起到先“验证”的作用。
1.1定理背景
德莎格(Desargues),1591年2月21日生于法国里昂的一个教会会员家庭,
一生主要在巴黎从事学术研究活动,晚年隐居老家里昂,1661年10月卒于里昂。作为一个普通教会会员家庭的九个孩子之一的笛沙格,早年曾在其家庭所在地里昂接受基础教育,并在里昂主管区基督教会的教士税务局收过杂税。他在那时,也曾写过如何教儿童唱歌的文章。笛沙格青年时期还参过军,当过军官,同时担任过法国军事工程师和建筑师。他在青壮年时期长期定居巴黎,并从1626年11月开始长期从事几何透视法的研究工作和学术活动。他曾在巴黎免费给别人讲课,以鼓励