生活中的三角形有哪些

“生活中的三角形有哪些”相关的资料有哪些?“生活中的三角形有哪些”相关的范文有哪些?怎么写?下面是小编为您精心整理的“生活中的三角形有哪些”相关范文大全或资料大全,欢迎大家分享。

生活中的三角形

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

生活中的三角形!

生活中的三角形!

义务教育课程标准实验教科书 浙江版《数学》七年级下册

1.1 认识三角形(1)

生活中的三角形!

考:三角形是小学已经了解的图形,在

日常生活中存在着很多三角形的例子,那么 什么叫三角形呢?

生活中的三角形!

A

记作:ΔABCb

c

读作:三角形ABC三角形的顶点: A、B、CC

B

a

三角形的内角: A、 B、 C

三角形的边:AB、AC、BC

c

b

a

生活中的三角形!

(1)请写出下图中所有的三角形。 (2)请写出△ABD中的三条边和三个内角.

C D

A

B

生活中的三角形!

思 考:

在ΔABC中, AB+AC与BC的大小关系 怎样?请说明理由。

C

两点之间线段最短!AB

你还有类似的结论吗?

生活中的三角形!

(1)任意画一个三角形,量出它的 三边长度,并填空: a=______;b=_______;c=______ (2)计算并比较: a+b____c; b+c____a; c+a____b

a-b____c; b-c____a; c-a____b(3)通过以上的计算你认为三角形 的三边存在怎样的关系?

生活中的三角形!

任意两边之和大于第三边。A

c

b

B

a

C

任意两边之差小于第三边。

生活中的三角形!

A

a

b

你是如何 理解的?C

B

c

任意两边之和大

三角形、等腰三角形以及全等三角形的证明

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

儒洋教育学科教师辅导讲义

学员姓名: 年 级: 课时数: 辅导科目: 学科教师: 课 题 授课时间: 教学目标 重点、难点 考点及考试要求 教学内容 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段:

(1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质

(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180°

(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。

4. 补充性质:在?ABC中,D是BC边上任意一点,E是AD上任意一点,则三角形、等腰三角形以及全等三角形的证明 备课时间: S?ABE?S?CDE?S

初中数学三角形(二)特殊三角形

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

三角形(二)——特殊三角形

【等腰三角形】

1.有两条边相等的三角形是等腰三角形,等腰三角形是轴对称图形。 2.等腰三角形的两个底角相等(简写成“等边对等角”)。

3.等腰三角形顶角的平分线平分底边并且垂直于底边。(常称为“三线合一”)。 4.如果一个三角形有两个内角相等,则它是等腰三角形。

姓 名: 【典型例题】

例1.已知?ABC中,那么?ABC一定是( ) ?B与?C的平分线的交点P恰好在BC边的高AD上, (A)直角三角形 (B)等边三角形 (C)等腰三角形 (D)等腰直角三角形

第12届(2001年)初二培训

例2.如图2,在?ABC中,AB=AC,∠A=36°,BD,CE分别平分∠ABC和∠ACB,它们相交于F点,是图中等腰三角形的个数是( )

第14届(2003年)初二培训

图2

例3.等腰三角形的一条腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( )。

图1

(A)30° (B)30°或150° (C)120°或150° (D)30°或120°或150°

第10届(1999年)初二第

三角形的分类

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

篇一:《三角形的分类》习题

《三角形的分类》习题

一、下面的说法,对的打“√”,错的打“×”。

1.有一个是锐角的三角形是锐角三角形。( )

2.直角三角形只有两个锐角。( )

3.如果一个三角形中最大的角小于90°,那么这个三角形一定是锐角三角形。( )

4.一个三角形不是锐角三角形,就是钝角三角形。( )

5.所有等边三角形都是等腰三角形而且都是锐角三角形。 ( )

6.由三条直线围成的图形叫做三角形。( )

7.在一个三角形中,不可能有两个或两个以上的直角。( )

8.在同一个三角形中,只能有一个角是钝角。( )

9.一个三角形中,至少有两个角是钝角。( )

10.两个角相等的三角形是等腰三角形。( )

11.等边三角形一定是锐角三角形。( )

12.三角形中最多有一个直角。( )

二、填空题。

1.三角形按角分类可分成( )三角形、( )三角形和( )三角形。

2.一个三角形中最大的角是锐角,这个三角形是( )三角形。

3.一个三角形中最大的角是120°,这个三角形是( )三角形。

4.你能给三角形分类吗:

三、选择。

1.三条边相等的三角形是( )三角形。

A.不等边B.等腰 C.等边

2.等腰三角形有( )条边相等。

A.1 B.2C.3

3.任何一个三角形至少有( )个锐角

三角形习题

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

三角形 综合习题

一、选择题

1.一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在 ( )

A.三角形内部 C.三角形外部

B.三角形的一边上 D.三角形的某个顶点上

2.下列长度的各组线段中,能组成三角形的是 ( ) A.4、5、6 C.5、7、12

B.6、8、15 D.3、9、13

3.在锐角三角形中,最大角α的取值范围是 ( ) A.0°<α<90° C.60°<α<180°

4.下列判断正确的是 ( )

A.有两边和其中一边的对角对应相等的两个三角形全等 B.有两边对应相等,且有一角为30°的两个等腰三角形全等 C.有一角和一条边对应相等的两个直角三角形全等 D.有两角和一边对应相等的两个三角形全等

5.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是( ) A.x<6 C.0<x<12

B.6<x<12 D.x>12

B.60°<α<90° D.60°≤α<90°

6.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A.则此三

角形 ( )

A.一定有一个内角为45° B.一定有一个内角为60° C.一定是直角三角形 D.一定是钝角三角形

7.三角

三角形的心

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

三角形的重心是三角形三条中线的交点。

三角形的三条中线必交于一点

已知:△ABC的两条中线AD、CF相交于点O,连结并延长BO,交AC于点E。

三角形的三条中线必交于一点

求证:AE=CE

证明:延长OE到点G,使OG=OB

∵OG=OB,∴点O是BG的中点 又∵点D是BC的中点∴OD是△BGC的一条中位线 ∴AD∥CG

∵点O是BG的中点,点F是AB的中点 ∴OF是△BGA的一条中位线 ∴CF∥AG

∵AD∥CG,CF∥AG,∴四边形AOCG是平行四边形 ∴AC、OG互相平分,∴AE=CE

三角形的重心的性质

1.重心到顶点的距离与重心到对边中点的距离之比为2:1。

2.重心和三角形3个顶点组成的3个三角形面积相等。

3.重心到三角形3个顶点距离的平方和最小。

4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:

(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3

5.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。

6.重心是三角形内到三边距离之积最大的点。

编辑本段二、三角形的外心

三角形的外心是三角形三条垂直平分线的交点(或

全等三角形

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

第十一章:全等三角形导学案

黑龙江省依兰县第一中学

11.1《全等三角形》导学案

【使用说明与学法指导】

1. 课前完成预习案,牢记基础知识,掌握基本题型,时间不超过15分钟。 2 .组内探究、合作学习完成《课内探究》不超过20分钟。

3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。 4.人人参与,合作学习,人人都有收获,人人都有进步。 5.带﹡的题要多动脑筋,展示你的能力。

一、学习目标:

1.理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。 2.掌握全等三角形的性质,并运用性质解决有关的问题。

3.会用符号表示全等三角形及他们的对应元素,培养大家的符号意识。

二、重点难点:运用全等三角形的性质解决相关的计算及证明等问题。 三、学习过程

《课前预习案》

(一)、自主预习课本2—3页内容,回答下列问题:

1、能够______________的图形就是全等图形, 两个全等图形的_________和________完全相同。

2、一个图形经过______、______、_________后所得的图形与原图形 。

3、把两个全等的三角形重合在一起,重合的顶点叫做

初中数学与三角形有关的线段之三角形

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

与三角形有关的线段之三角形

一.选择题(共20小题) 1.(2015春?宜阳县期末)试通过画图来判定,下列说法正确的是( ) A. 一个直角三角形一定不是等腰三角形 B. 一个等腰三角形一定不是锐角三角形 C. 一个钝角三角形一定不是等腰三角形 D. 一个等边三角形一定不是钝角三角形 2.(2015春?宿州期末)下列说法正确的是( ) A. 一个钝角三角形一定不是等腰三角形,也不是等边三角形 B. 一个等腰三角形一定是锐角三角形,或直角三角形 C. 一个直角三角形一定不是等腰三角形,也不是等边三角形 D. 一个等边三角形一定不是钝角三角形,也不是直角三角形 3.(2014春?泗县校级期中)图中三角形的个数是( )

A. 8个 B. 9个 C. 10个 4.(2014秋?宝坻区校级期中)如图,图中共有三角形( )

A. 4个 B. 5个 C. 6个 5.(2014秋?安次区校级月考)如图中三角形的个数是( )

A. 6 B.7 C.8 6.(2014春?福田区校级月考)至少有两边相等的三角形是( A. 等边三角形 B. 等腰三角形 C. 等腰直角三角形 D.

三角形讲义

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

第十一章 全等三角形

11.1 全等三角形

知识点一 全等形的概念

能够完全重合的两个图形叫做全等形。

全等三角形关注的是两个图形的形状和大小,而不是图形所在的位置。看两个图形是否全等,只要把他们叠合在一起,看是否能够完全重合,能够重合即为全等形。 知识点二 全等三角形的定义和表示方法

(1) 能够完全重合的两个三角形叫做全等三角形。

(2) 全等三角形是特殊的全等形,全等三角形关注的是两个三角形的形状和大小是否完

全一样,叠合在一起是否重合,与他们的位置没有关系。把两个全等的三角形叠合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的叫做对应角。

(3) “全等”用“≌”表示,读作“全等于”,记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。 找对应边、对应角通常的几种方法:

1, 在两个全等三角形中最长边对最长边,最短边对最短边,最大角对最大角,最小角对最

小角。 2, 对应角的对边为对应边,对应边的对角为对应角;

3, 根据书写规范,按照对应顶点找对应边或对应角,如△ABE≌△ACD,则对应边是AB与

AC、BE与CD、AE与AD,对应角∠ABE与∠ACD、∠AEB与∠ADC、∠BAE与∠CAD。 知识点三 全等三角形的

全等三角形

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

第一讲 全等三角形

一、知识网络图:

1

2 3 为什么没有SSA?(反例)

三、例题解析

例:E、F分别为正方形ABCD的边BC,CD上的两个点,且BE=CF,求证:AE CF

E

D F

四、真题精讲

1.(2012 柳州)如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )

A.PO B.PQ C.MO D.MQ

2.(2012中考)如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )

A.∠BCA=∠F B.

3.(2012 聊城)如图,四边形不一定全等的条件是( )

A.DF=BE B.AF=CE

4.(2012十堰)如图,梯形,则梯形ABCD的周长为( B A.22 B.24

5.(2012义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是 DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等) .(不添加