高考数学压轴题100题精选
“高考数学压轴题100题精选”相关的资料有哪些?“高考数学压轴题100题精选”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高考数学压轴题100题精选”相关范文大全或资料大全,欢迎大家分享。
中考数学压轴题100题精选
我选的中考数学压轴题100题精选
【001】如图,已知抛物线2
y a x
=-+a≠0)经过点(2)
(1)
A-,0,抛物线的顶点为D,过O作射线OM AD
∥.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.
(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为()
t s.问当t为何值时,四边形DAOP分别为平行四边形直角梯形等腰梯形
(3)若OC OB
=,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQ的面积最小并求出最小值及此时PQ的长.
【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA 以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,
DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随
初中数学中考100题压轴题精选
2011年中考数学压轴题100题精选
【001】如图,已知抛物线y?a(x?1)2?33(a≠0)经过点A(?2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.
(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为
t(s).问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?
(3)若OC?OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.
y M D C
P A O Q B x 【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-C
初中数学中考100题压轴题精选
2011年中考数学压轴题100题精选
【001】如图,已知抛物线y?a(x?1)2?33(a≠0)经过点A(?2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.
(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为
t(s).问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?
(3)若OC?OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.
y M D C
P A O Q B x 【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-C
初中数学中考100题压轴题精选
2011年中考数学压轴题100题精选
【001】如图,已知抛物线y?a(x?1)2?33(a≠0)经过点A(?2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.
(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为
t(s).问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?
(3)若OC?OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.
y M D C
P A O Q B x 【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-C
中考数学压轴题100题精选 - 图文
我选的中考数学压轴题100题精选
【001】如图,已知抛物线y?a(x?1)2?33(a≠0)经过点A(?2,0),抛物线的顶点为D,过O作射线
OM∥AD.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.
(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?
(3)若OC?OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.
y M D C
P A O Q B x 【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于
数学压轴题精选
如图,菱形ABCD的边长为6且∠DAB=60°,以点A为原点、边AB所在的直线为x轴且顶点D在第一象限建立平面直角坐标系。动点P从点D出发沿折线DCB向终点B以2单位/每秒的速度运动,同时动点Q从点A出发沿x轴负半轴以1单位/秒的速度运动,当点P到达终点时停止运动,运动时间为t,直线PQ交边AD于点E。
⑴. 直接写出点D、C的坐标和经过A、D、C三点的抛物线解析式; ⑵. 是否存在时刻t使得PQ⊥DB,若存在请求出t值,若不存在,请说明理由; ⑶. 设AE长为y,试求y与t之间的函数关系式; ⑷. 若F、G为DC边上两点,且点DF=FG=1,试在对角线DB上找一点M、抛物线ADC对称轴上找一点N,使得四边形FMNG周长最小并求出周长最小值。
yBDFGPC●●A QFQA QQEA BA xB
QA P
如图,在平面直角坐标系xOy中,点B的坐标为(6,8),点D坐标为(9,0),过B作BA⊥x轴于点A,作BC⊥y轴于点C.点P沿OC自点O向点C运动,同时点Q沿OA自点O向点A运动,点Q与点P的速度之比为1:n,连结PB、PQ,
⑴.求经过C、B、D三点的抛物线; ⑵.当n=____时,∠OQP=30°;当n=____时,∠OQP=45
数学压轴题精选
如图,菱形ABCD的边长为6且∠DAB=60°,以点A为原点、边AB所在的直线为x轴且顶点D在第一象限建立平面直角坐标系。动点P从点D出发沿折线DCB向终点B以2单位/每秒的速度运动,同时动点Q从点A出发沿x轴负半轴以1单位/秒的速度运动,当点P到达终点时停止运动,运动时间为t,直线PQ交边AD于点E。
⑴. 直接写出点D、C的坐标和经过A、D、C三点的抛物线解析式; ⑵. 是否存在时刻t使得PQ⊥DB,若存在请求出t值,若不存在,请说明理由; ⑶. 设AE长为y,试求y与t之间的函数关系式; ⑷. 若F、G为DC边上两点,且点DF=FG=1,试在对角线DB上找一点M、抛物线ADC对称轴上找一点N,使得四边形FMNG周长最小并求出周长最小值。
yBDFGPC●●A QFQA QQEA BA xB
QA P
如图,在平面直角坐标系xOy中,点B的坐标为(6,8),点D坐标为(9,0),过B作BA⊥x轴于点A,作BC⊥y轴于点C.点P沿OC自点O向点C运动,同时点Q沿OA自点O向点A运动,点Q与点P的速度之比为1:n,连结PB、PQ,
⑴.求经过C、B、D三点的抛物线; ⑵.当n=____时,∠OQP=30°;当n=____时,∠OQP=45
2010年中考数学压轴题100题精选答案
2010年中考数学压轴题100题精选(1-10题)答案
【001】解:(1)
抛物线2
(1)0)
y a x a
=-+≠经过点(20)
A-,,
09a a
∴=+=·······································································································1分∴
二次函数的解析式为:2
y x x
=+ ·························································3分
(2)D
为抛物线的顶点D
∴过D作DN OB
⊥于N
,则DN=
3660
AN AD DAO
=∴=∴∠=
,°···························································4分OM AD
∥
①当AD OP
=时,四边形DAOP是平行四边形
66(s)
OP t
∴=∴=······················································· 5分
②当DP OM
⊥时,四边形DAOP是直角梯形
过O作OH AD
⊥于H,2
AO=,则1
AH=
(如果没求出60
DAO
∠=
2010年中考数学压轴题100题精选答案
2010年中考数学压轴题100题精选(1-10题)答案
【001】解:(1)
抛物线2
(1)0)
y a x a
=-+≠经过点(20)
A-,,
09a a
∴=+=·······································································································1分∴
二次函数的解析式为:2
y x x
=+ ·························································3分
(2)D
为抛物线的顶点D
∴过D作DN OB
⊥于N
,则DN=
3660
AN AD DAO
=∴=∴∠=
,°···························································4分OM AD
∥
①当AD OP
=时,四边形DAOP是平行四边形
66(s)
OP t
∴=∴=······················································· 5分
②当DP OM
⊥时,四边形DAOP是直角梯形
过O作OH AD
⊥于H,2
AO=,则1
AH=
(如果没求出60
DAO
∠=
高考数学压轴题跟踪
1.已知数列{an}满足a1?1,a2?1,且[3?(?1)n]an?2?2an?2[(?1)n?1], 2(n=1,2,3,?).(1)求a3,a4,a5,a6的值及数列{an}的通项公式; (2)令bn?a2n?1?a2n,记数列{bn}的前n项的和为Tn,求证:Tn<3.
11,a5?5,a6? 48*当n为奇数时,不妨设n=2m1,m?N,则a2m?1?a2m?1?2, {a2m?1}为等差数列,
解:(1)分别令n=1,2,3,4可求得a3?3,a4?a2m?1=1+2(m1)=2m1, 即an?n。
当n为偶数时,设n=2m,m?N,则2a2m?2?a2m?0, {a2m}为等比数列,
*1n11m?11a2m??()?m,故an?()2,
2222?n(n?2m?1m?N*)1?综上所述,an??1n (2)bn?a2n?1?a2n?(2n?1)?n
*2?()2(n?2mm?N)?21111Tn?1??3?2?5?3???(2n?1)?n
222211111Tn?1?2?3?3???(2n?3)?n?(2n?1)?n?1 22222111111两式相减:Tn??2(2?3??