Opencv 车牌识别
“Opencv 车牌识别”相关的资料有哪些?“Opencv 车牌识别”相关的范文有哪些?怎么写?下面是小编为您精心整理的“Opencv 车牌识别”相关范文大全或资料大全,欢迎大家分享。
基于Opencv的车牌识别工具研究与实现
摘 要
近年来随着智能交通系统的全面实施,车牌自动识别(License Plate Recognition,LPR)技术应用越来越广泛。车牌识别作为目前智能交通系统不可或缺的一部分,已经普遍的应用到各个领域。
本文主要研究汽车牌照自动识别技术,通过研究国内现有车牌特征,使用相关识别算法,利用VC++和OpenCV(计算机视觉库)等开源库,开发了一个车牌识别工具。该工具可以使用数字图像处理技术,模式识别,计算机视觉分析技术,对图像进行处理、定位、分割,从而实现车牌识别,准确获取车牌号码。
本文使用水平分割、垂直分割和车牌大小归一化技术对预处理之后的图像进行定位,同时利用 OpenCV库中的边缘检测方法将已定位好的车牌区域进行分割、保存,对已经分割的图像使用字符切割算法进行切割,最终将切割的字符保存为单个的字符图像,使用已有的字符模板进行特征值匹配,实现字符识别功能。
最后本文对已经完成的车牌识别工具进行了实验,实验结果表明该工具可以快速准确的进行车牌号码识别。
关键词: OpenCV;车牌定位;车牌识别
ABSTRACT
In recent years, with the full of implementation intelligent
OpenCV人脸识别 - 图文
摘 要
人脸检测主要是基于计算机识别的一项数字化技术,用以准确获取人的脸部大小和位置信息,在进行人脸检测时,突出主要的脸部特征,淡化次要的环境、衣着等因素。对于某些情况下,人脸检测也可以计算出人脸,如眼睛,鼻子和嘴等精确的微妙特征。由于在安全检测系统,医学,档案管理,视频会议和人机交互等领域人脸检测系统都有光明的应用前景,因此人脸检测逐渐成为了两个跨学科领域研究的热门话题:人工智能和当前模式识别。本文基于OpenCV视觉库具体的设计并开发了对数字图像中的人脸检测的程序,所采用的人脸检测的原理主要是分类器训练模式(Adaboost算法)提取Haar特征的方法。它在整个软件极其重要的作用,图像中人脸的准确定位和识别都受图像处理好坏的直接影响。本次所设计的软件在图像处理部分所采用的方法是基于Adaboost算法进行Haar特征的提取,在此之上加以通过积分图方法来获取完整的级联分类器结构,进行人脸检测时,OpenCV级联分类器通过Adaboost人脸检测算法进行训练,此后采用不同情况下的实验样本完成精确定位以及检测试验。经过代码的设计和调试,在最后的测试中针对数字图像进行的人脸检测和定位达到了较好的效果,提高了定位和识别的正确率。
关键词:人脸检测
车牌识别文献综述
1 前 言
随着我国汽车产业的飞速发展,大量在公共场合的汽车需要得到监管,为了更好地进行管理,必须对车辆进行一种智能化管理。所谓的智能交通系统,是指在较完善的基础设施(包括道路,机场)之上将先进的通信技术和计算机技术和系统综合技术有效的集合并应用于地面交通运输系统,从而建立起来在大范围发挥作用的,准确,高速,实时的交通运输系统。车辆牌照定位与识别是计算机视觉与模式识别技术在智能交通领域应用的重要研究课题之一,该技术应用范围非常广泛,其中包括:(1)交通流量检测;(2)交通控制与诱导;(3)机场、港口等出入口车辆管理;(4)小区车辆管理;(5)闯红灯等违章车辆监控;(6)不停车自动收费;(7)道口检查站车辆监控;(8)公共停车场安全防盗管理;(9)计算出行时间;(10)车辆安全防盗、查堵指定车辆等。其潜在在市场应用价值极大,有能力产生巨大的社会效益和经济效益。
车牌识别系统作为智能交通系统最重要的子系统之一,是指对公路上配置的摄像头所拍摄的照片进行数字图像处理与分析对汽车图像进行平滑、二值化、模糊处理、边缘检测、图像分割等利用多种手段实现车牌定位,识别,分割最终完成对车牌的识别。车牌识别系统的用途很多,在高速公路收费站、路口监测(电子警察)、
车牌识别的matlab程序
附录
车牌识别程序
clear ; close all;
%Step1 获取图像 装入待处理彩色图像并显示原始图像 Scolor = imread('3.jpg');%imread函数读取图像文件 %将彩色图像转换为黑白并显示
Sgray = rgb2gray(Scolor);%rgb2gray转换成灰度图
figure,imshow(Scolor),title('原始彩色图像');%figure命令同时显示两幅图
figure,imshow(Sgray),title('原始黑白图像');
%Step2 图像预处理 对Sgray 原始黑白图像进行开操作得到图像背景 s=strel('disk',13);%strel函数
Bgray=imopen(Sgray,s);%打开sgray s图像
figure,imshow(Bgray);title('背景图像');%输出背景图像 %用原始图像与背景图像作减法,增强图像 Egray=imsubtract(Sgray,Bgray);%两幅图相减
figure,imshow(Egray);title('增强黑白图像');%输出黑白图像 %Step3 取得最佳阈值,将图像二值化
fmax1=doub
柯力 车牌识别 - 图文
武汉工程大学 计算机科学与工程学院
综合设计报告
设计名称: 图像处理与机器视觉综合设计 设计题目: 车牌识别系统实现 学生学号: 0905030211 专业班级: 09智能2班 学生姓名: 柯力 学生成绩: 指导教师(职称): 赵彤洲(副教授) 课题工作时间: 2012-11-26 至 2012-12-07
武汉工程大学计算机科学与工程学院 综合设计报告
说明:
1、报告中的第一、二、三项由指导教师在综合设计开始前填写并发给每个学生;四、五两项(中英文摘要)由学生在完成综合设计后填写。 2、学生成绩由指导教师根据学生的设计情况给出各项分值及总评成绩。 3、指导教师评语一栏由指导教师就学生在整个设计期间的平时表现、设计完成情况、报告的质量及答辩情况,给出客观、全面的评
车牌识别(附源代码)
车牌识别
电子1301孙洪江 2013234020113
一、目的与要求
车牌定位系统的目的在于正确获取整个图像中车牌的区域,并识别出车牌号。通过设计实现车牌识别系统,能够提高学生分析问题和解决问题的能力,还能培养一定的科研能力
二、设计原理:
牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些牌照识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别等几部分。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。
三、详细设计步骤:
为了进行牌照识别,需要以下几个基本的步骤: a.牌照定位,定位图片中的牌照位置;
b.牌照字符分割,把牌照中的字符分割出来;
c.牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。 牌照识别过程中,牌照颜色的识别依据算法不同,
车牌识别的matlab程序
附录
车牌识别程序
clear ; close all;
%Step1 获取图像 装入待处理彩色图像并显示原始图像 Scolor = imread('3.jpg');%imread函数读取图像文件 %将彩色图像转换为黑白并显示
Sgray = rgb2gray(Scolor);%rgb2gray转换成灰度图
figure,imshow(Scolor),title('原始彩色图像');%figure命令同时显示两幅图 figure,imshow(Sgray),title('原始黑白图像');
%Step2 图像预处理 对Sgray 原始黑白图像进行开操作得到图像背景 s=strel('disk',13);%strel函数
Bgray=imopen(Sgray,s);%打开sgray s图像
figure,imshow(Bgray);title('背景图像');%输出背景图像 %用原始图像与背景图像作减法,增强图像 Egray=imsubtract(Sgray,Bgray);%两幅图相减
figure,imshow(Egray);title('增强黑白图像');%输出黑白图像 %Step3 取得最佳阈值,将图像二值化
fmax1=doub
车牌识别毕业论文 - 图文
摘 要
车牌自动识别技术是实现智能交通系统的关键技术,对我国交通事业的发展起着十分重要的作用,进而影响我国的经济发展速度及人们的生活质量。车牌识别系统运用模式识别、人工智能技术,能够实时准确地自动识别出车牌的数字、字母及汉字字符,进而实现电脑化监控和管理车辆。一个车牌识别系统的基本硬件配置有照明装置、摄像机、主控机、采集卡等。而软件则是由具有车牌识别功能的图像分析和处理软件,以及能够具体满足应用需求的后台管理软件组成。车牌自动识别系统主要分为图像预处理、车牌定位、字符分割和字符识别等主要模块,也包括后续应用程序的开发。
针对不同的模块,本文研究分析了现有的理论算法,并提出了具有实际应用意义的解决方案。 1.在图像预处理模块,因为人眼对于不同颜色分量的敏感度不同,图像灰度化采用加权平均值法;二值化过程中阈值的选取至关重要,本文采用动态自适应阈值法,效果理想;边缘提取利用了拉普拉斯算子;去噪过程采用的是中值滤波方法;2.车牌定位模块包括粗定位和细定位,本文通过分析车牌的尺寸、类型、颜色,得到不同的特征向量,即车牌的几何特征、灰度分布特征、投影特征和字符排列特征等,利用这些特征进行车牌定位; 3.在车牌字符分割模块,提出了双向对比垂直投影分割法,
立体高清车牌识别系统(纯车牌识别)技术方案-2015 - 图文
www.bluecardsoft.com.cn <<立体高清车牌识别系统>>方案 BlueCard 北京蓝卡软件技术有限公司 北京蓝卡软件技术有限公司 地址:北京市海淀区上地西路8号院上地科技大厦4#楼801室 电话:010-58859090 传真:010-58859191 2014-01-06 - 1 - www.bluecardsoft.com.cn
目 录
公司简介 ..............................................................................................................................................
基于MATLAB的车牌识别研究
车牌识别技术研究
摘要:车牌识别是现代智能交通系统中的重要组成部分之一,应用十分的广泛。它以数字图像处理、模式识别、计算机视觉等技术基础,对摄像机所拍摄的车辆图像进行分析,得到每一辆汽车唯一的车牌号码,从而完成识别过程,它对汽车防盗、缓解交通紧张等起到了积极的作用。本文主要介绍了有关于车牌识别技术的原理,以及基于MATLAB的车牌识别的设计,对一张车辆图片进行一系列的预处理(灰度化、边缘检测、腐蚀、填充、形态滤波)之后,将车牌中的字符分割出来,最后将分割出的字符与数据库中存储的字符进行模板匹配。通过以上的步骤的实现,该系统便能完成牌照图像的定位分割和牌照字符的自动识别。
关键词:MATLAB;图像预处理;车牌定位;字符分割;字符识别
License plate recognition technology research
Abstract:License plate recognition is one of the modern intelligent transportation system is an important part of a wide range of applications. It is technology-b