导数大题训练及答案
“导数大题训练及答案”相关的资料有哪些?“导数大题训练及答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“导数大题训练及答案”相关范文大全或资料大全,欢迎大家分享。
导数大题训练解析
导数:
1.已知函数f?x??xlnx. (1)求函数f?x?的极值点;
(2)若直线l过点(0,—1),并且与曲线y?f?x?相切,求直线l的方程;
(3)设函数g?x??f?x??a?x?1?,其中a?R,求函数g?x?在?1,e?上的最小值.(其中e为自然对数的底数)
【答案】 解:(1)f??x??lnx?1,x>0.……………………1分
1,f??1
而f??x?x?x,>0?lnx+1>0?x>e<0?lnx?1<0?0<<e
?f?x??0,1????1,????
所以在?e?上单调递减,在?e?上单调递增.………………3分 x?1 所以e是函数f?x?的极小值点,极大值点不存在.…………………4分
(2)设切点坐标为
?x0,y0?,则y0?x0lnx0,切线的斜率为lnx0?1,
所以切线l的方程为
y?x0lnx0??lnx0?1??x?x0?.……………………5分
又切线l过点?0,?1?,所以有?1?x0lnx0??lnx0?1??0?x0?.
解得
x0?1,y0?0.
所以直线l的方程为y?x?1.………………………………………………7分
导数大题训练解析
导数:
1.已知函数f?x??xlnx. (1)求函数f?x?的极值点;
(2)若直线l过点(0,—1),并且与曲线y?f?x?相切,求直线l的方程;
(3)设函数g?x??f?x??a?x?1?,其中a?R,求函数g?x?在?1,e?上的最小值.(其中e为自然对数的底数)
【答案】 解:(1)f??x??lnx?1,x>0.……………………1分
1,f??1
而f??x?x?x,>0?lnx+1>0?x>e<0?lnx?1<0?0<<e
?f?x??0,1????1,????
所以在?e?上单调递减,在?e?上单调递增.………………3分 x?1 所以e是函数f?x?的极小值点,极大值点不存在.…………………4分
(2)设切点坐标为
?x0,y0?,则y0?x0lnx0,切线的斜率为lnx0?1,
所以切线l的方程为
y?x0lnx0??lnx0?1??x?x0?.……………………5分
又切线l过点?0,?1?,所以有?1?x0lnx0??lnx0?1??0?x0?.
解得
x0?1,y0?0.
所以直线l的方程为y?x?1.………………………………………………7分
导数专项训练及答案
导数专项训练
【1】导数的几何意义及切线方程
1.已知函数f(x)?a在x?1处的导数为?2,则实数a的值是________.
x2. 曲线y=3x-x3上过点A(2,-2)的切线方程为___________________. 3. 曲线y?积是 .
4.若直线y=kx-3与曲线y=2lnx相切,则实数k=_______. 5.已知直线y?x?2与曲线y?ln?x?a?相切,则a的值为 _______. 6. 等比数列{an}中,a1?1,a2012?9,函数f(x)?x(x?a1)(x?a2)(x?a2012)?2,则曲线
y?f(x)在点(0,f(0))处的切线方程为_____________.
1和y?x2在它们的交点处的两条切线与x轴所围成的三角形的面x7.若点P是曲线y=x2-lnx上的任意一点,则点P到直线y=x-2的最小距离为________.
8. 若点P、Q分别在函数y=ex和函数 y=lnx的图象上,则P、Q两点间的距离的最小值是_____.
9. 已知存在实数a,满足对任意的实数b,直线y??x?b都不是曲线y?x3?3ax的切线,则实数a的取值范围是_________.
10. 若关于x的方
高考导数大题汇编(理科)答案
1/10
班级_____________________ 姓名____________________ 考场号____________ 考号___________
---------------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------
一、解答题
1. 解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,'
112()e ln e e e .x
x x x a b b f x a x x x x
--=+-+ 由题意可得'
(1)2,(1) e.f f ==故1,2a b ==.
(Ⅱ)由(Ⅰ)知12e ()e ln ,x x
f x x x -=+从而()1f x >等价于2
ln e .e
x x x x ->- 设函数()ln g x x x =,则()1ln g x x '=+,所以当1
(0,)e
x ∈时,'
()0g x <; 当1
(,)e
x ∈+∞时,'
()0g x >,故()g
2017-2018年高考数学导数大题+答案(40页)
【精品】2017-2018年高考数学导数大题+答案
一.解答题(共28小题)
1.已知函数 f(x)=ex(ex﹣a)﹣a2x. (1)讨论 f(x)的单调性;
(2)若f(x)≥0,求a的取值范围. 2.已知函数f(x)=ae2x+(a﹣2)ex﹣x. (1)讨论f(x)的单调性;
(2)若f(x)有两个零点,求a的取值范围. 3.已知函数f(x)=lnx+ax2+(2a+1)x. (1)讨论f(x)的单调性; (2)当a<0时,证明f(x)≤﹣4.已知函数f(x)=x﹣1﹣alnx. (1)若 f(x)≥0,求a的值;
(2)设m为整数,且对于任意正整数n,(1+)(1+m的最小值.
5.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=exf(x).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)已知函数y=g(x)和y=ex的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在x=x0处的导数等于0;
(ii)若关于x的不等式g(x)≤ex在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.
6.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一
测量大题及答案
六、计算题:
1、 一测回角度测量,得上半测回A左=63°34′43″,下半测回A右=63°34′48″。 求一测回角度测量结果,结果取值到秒。
2、 表中各直线的已知方向值换算出它们的正、反方位角或象限角,并填在表中。 直线名称 正方位角(0 /) 反方位角(0 /) 象限角(0 /) AB 315 30 AC 60 20 CD 127 24 52 36
3、计算下表闭合水准路线各水准点的高程, 见表。
测站 点号 方向 高差观测值h'i(m) 测段长Di(km) 测站数nI 高差改正数vi=-Wni/N(mm) 改正后高 差值(m) 高 程(m) BM 67.648 1 1.224 0.535 10 A
2 -2.424 0.980 15 B
3 -1.781 0.551 8 C
4 1.714 0.842 11 D
5 1.108 0.833 12 BM 67.648
(2)W=∑h'i= mmW容 =±58mm (5)[D]= km (6)N= (10)∑v= mm ∑h= 4、下图中,A点坐标xA=600.25m,yA=1300.78m;B点坐标xB=300.25m, yB=1000.78m。水平角 =15
直线与圆大题训练
1.已知点A(a,3),圆C的圆心为(1,2),半径为2. (I)求圆C的方程;
(II)设a=3,求过点A且与圆C相切的直线方程;
(III)设a=4,直线l过点A且被圆C截得的弦长为23,求直线l的方程; (IV)设a=2,直线l1过点A,求l1被圆C截得的线段的最短长度,并求此时l1的方程.
2.已知圆C:?x?1???y?2??4,直线l:y?kx?1?2k。
(Ⅰ)求证:直线l与圆C恒有两个交点;
(Ⅱ)求出直线l被圆C截得的最短弦长,并求出截得最短弦长时的k的值;
22?????????(Ⅲ)设直线l与圆C的两个交点为M,N,且CM?CN??2(点C为圆C的圆心),求直线l的方程。
3.已知圆C经过两点A(3,3),B(4,2),且圆心C在直线x?y?5?0上。 (Ⅰ)求圆C的方程;
(Ⅱ)直线l过点D(2,4),且与圆C相切,求直线l的方程。
4.已知圆M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切圆M于A,B两点。 (1)若Q(1,0),求切线QA,QB的方程; (2)求四边形QAMB面
高考数学大题训练32
高 考 数 学 大 题 训 练32
1、(14分)数列{an}中,
a1 a
an 1 can 1 c
(n N )
a、c R c 0
(1)求证:a(2)设a 的和Sn。
1时,{an 1}是等比数列,并求{an}通项公式。
1
2
c
1
2 bn n(1 an) (n N )求:数列{bn}的前
n项
4 、
(3)设
a c
4 、
cn
3 an
2 an。记dn
c2n c2n 1 ,数
列{dn}的前n项和Tn。证明:Tn
(n N)。 3
1、(14分)(1)证明:{an-1}等比数列。an 1 can 1 can 1 1 c(an 1) a 1时,
a1 1 a 1 an 1 (a 1)cn 1 an (a 1)cn 1 1
(1)(2)由(1)的an 122
由错位相减法得Sn
n 1
n1
b n() 1 (1) 1 n22
n
2 2n
C 4 (3)n( 4)n 1
dn
n
(16n 1)(16n 4)
n2(16n) 3 16n 4
n
(16n)2
16n
11n
25 16(1 (16))
1
1 16
1
Tn d1 d2 dn 25(16 1612 1613 161n) 51
5(1 ) 3316n
2.(本小题满分15分)
高考数学大题训练32
高 考 数 学 大 题 训 练32
1、(14分)数列{an}中,
a1 a
an 1 can 1 c
(n N )
a、c R c 0
(1)求证:a(2)设a 的和Sn。
1时,{an 1}是等比数列,并求{an}通项公式。
1
2
c
1
2 bn n(1 an) (n N )求:数列{bn}的前
n项
4 、
(3)设
a c
4 、
cn
3 an
2 an。记dn
c2n c2n 1 ,数
列{dn}的前n项和Tn。证明:Tn
(n N)。 3
1、(14分)(1)证明:{an-1}等比数列。an 1 can 1 can 1 1 c(an 1) a 1时,
a1 1 a 1 an 1 (a 1)cn 1 an (a 1)cn 1 1
(1)(2)由(1)的an 122
由错位相减法得Sn
n 1
n1
b n() 1 (1) 1 n22
n
2 2n
C 4 (3)n( 4)n 1
dn
n
(16n 1)(16n 4)
n2(16n) 3 16n 4
n
(16n)2
16n
11n
25 16(1 (16))
1
1 16
1
Tn d1 d2 dn 25(16 1612 1613 161n) 51
5(1 ) 3316n
2.(本小题满分15分)
高中导数突破训练
82题突破高中数学导数
已知函数f(x)?x?alnx,其中a为常数,且a??1.(Ⅰ)当a??1时,求f(x)在[e,e](e=2.718 28…)上的值域;(Ⅱ)若f(x)?e?1对任意x?[e,e]恒成立,求实数a的取值范围.2. 已知函数
22x?2y?0垂直,求a的值; (II)求函数
.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)当a?0时,若对?x??0,3?有f(x)?4恒成立,求f(x)?x3?6ax2?9a2x(a?R)
实数a的取值范围.4.已知函数f(x)?1x3?ax2?(a2?1)x?b(a,b?R). (I)若x=1为
31f(x)?alnx?,a?R. (I)若曲线y?f(x)在点(1,f(1))处的切线与直线
xf(x)的单调区间; (III)当a=1,且x?2时,证明:f(x?1)?2x?5.3. 已知
f(x)的极值点,求a的值; (II)若y?f(x)的
图象在点(1,f(i)求f(x)在区间[-2,4]上的最大值;(ii)求函数G(x)?[f'(x)?(m?2)x?m]e?x(m?R)(1))处的切线方程为x?y?3?0,
f(x)?lnx?a .x的单调区间5.已知函数 (I)当a<0时,求函数
f(x)的单调