关联规则挖掘apriori算法

“关联规则挖掘apriori算法”相关的资料有哪些?“关联规则挖掘apriori算法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“关联规则挖掘apriori算法”相关范文大全或资料大全,欢迎大家分享。

关联规则中Apriori算法的创新研究

标签:文库时间:2025-03-17
【bwwdw.com - 博文网】

关联规则中Apriori算法的创新研究

摘要:在关联规则理论的基础上,通过对现有算法的效率分析,在原有Apriori关联规则挖掘算法的基础上,从减少事务数据库中扫描记录量入手,提出一个改进的快速关联规则挖掘算法Fast_Apriori。利用候选项集和频繁项集中的结果对数据库中的记录进行筛选,对不包含候选项集中任何项集的记录和不包含在候选项集中的事物记录直接删除,减少扫描的记录数,提高整个算法的效率。

关键词:关联规则 Apriori算法 候选项集 频繁项集 中图分类号:TP311.13 文献标识码:A 文章编号:1007-9416(2014)04-0133-02

在关联规则的各种挖掘算法研究中,主要集中在产生频繁项集的这一挖掘步骤。在众多算法中,Apriori算法最为著名,它是Agrawal等人在1994年提出的,该算法首次将关联规则挖掘理论运用在现实应用系统中。Apriori算法使用了一种逐层迭代的宽度优先搜索策略,由满足一定频度的项集来构造可能是下一个满足频度的项集的候选项集,根据设定的最小支持度计数筛选出频繁项集。

Apriori算法基本思想就是发现频繁项集,然后找出频繁项集中的关联性更强的规则。找到频

关联规则中Apriori算法的创新研究

标签:文库时间:2025-03-17
【bwwdw.com - 博文网】

关联规则中Apriori算法的创新研究

摘要:在关联规则理论的基础上,通过对现有算法的效率分析,在原有Apriori关联规则挖掘算法的基础上,从减少事务数据库中扫描记录量入手,提出一个改进的快速关联规则挖掘算法Fast_Apriori。利用候选项集和频繁项集中的结果对数据库中的记录进行筛选,对不包含候选项集中任何项集的记录和不包含在候选项集中的事物记录直接删除,减少扫描的记录数,提高整个算法的效率。

关键词:关联规则 Apriori算法 候选项集 频繁项集 中图分类号:TP311.13 文献标识码:A 文章编号:1007-9416(2014)04-0133-02

在关联规则的各种挖掘算法研究中,主要集中在产生频繁项集的这一挖掘步骤。在众多算法中,Apriori算法最为著名,它是Agrawal等人在1994年提出的,该算法首次将关联规则挖掘理论运用在现实应用系统中。Apriori算法使用了一种逐层迭代的宽度优先搜索策略,由满足一定频度的项集来构造可能是下一个满足频度的项集的候选项集,根据设定的最小支持度计数筛选出频繁项集。

Apriori算法基本思想就是发现频繁项集,然后找出频繁项集中的关联性更强的规则。找到频

关联规则挖掘算法学习报告

标签:文库时间:2025-03-17
【bwwdw.com - 博文网】

模式识别

关联规则挖掘算法学习报告

专业:班级:姓名:学号:

电子信息工程 10-2 范琳琳 201016050203

模式识别

摘要:如何在海量的数据中,挖掘其中隐藏的、人们感兴趣的知识,已经成为了一个研究的热点。apriori算法是目前使用最为广泛的关联规则挖掘算法,本文就其算法实现的流程以及具体的实现进行研究。 关键词:数据挖掘;关联规则挖掘;apriori算法 中图分类号:tp309 文献标识码:a 文章编号:1007-9599 (2011) 23-0000-02 apriori association rule mining algorithm nan zhihai,sun yong

(school of computer science&technology,soochow university,suzhou 215006,china)

abstract:how to vast amounts of data,mining the hidden,people are interested in knowledge,has become a resea

基于关联规则的数据挖掘算法研究

标签:文库时间:2025-03-17
【bwwdw.com - 博文网】

基于关联规则的数据挖掘算法研究

北京工业大学硕士学位论文

基于关联规则的数据挖掘算法研究

姓名:安颖申请学位级别:硕士专业:计算机应用技术指导教师:毛国君

20090201

基于关联规则的数据挖掘算法研究

摘要

摘要

数据挖掘是当今人工智能和数据库研究方面最富活力的领域。关联规则是数据挖掘的一个主要研究内容。关联规则描述了给定数据项集之间的有趣联系。目前,已经提出了许多挖掘关联规则的算法,其中最著名的是Apriori算法及其变形。针对Apfiofi算法中频繁项集产生效率低和产生无用规则、丢失有用规则两个核心问题,本文提出了两种改进的Apfiofi算法,它们能有效提高频繁集的产生效率和产生更为合理的关联规则。本文主要工作包括以下几个方面。

1、本文首先概述了数据挖掘理论和发展,以及主要的数据挖掘技术;然后研究了关联规则挖掘的步骤。对经典的Apriori算法做了全面的分析并指出算法的不足。

2、

针对Apriori算法的不足,提出了一种基于事务标号集的Apriori改进

on

算法——BTA(Based

TIDsets

Apriori)算法。BTA算法的特点在于:在首次扫描

数据库生成候选卜项集的同时,记住包含每一个项集的事务标识符TID集合。这样,只要统计候选项集所对应的TI

基于关联规则的数据挖掘算法研究

标签:文库时间:2025-03-17
【bwwdw.com - 博文网】

基于关联规则的数据挖掘算法研究

北京工业大学硕士学位论文

基于关联规则的数据挖掘算法研究

姓名:安颖申请学位级别:硕士专业:计算机应用技术指导教师:毛国君

20090201

基于关联规则的数据挖掘算法研究

摘要

摘要

数据挖掘是当今人工智能和数据库研究方面最富活力的领域。关联规则是数据挖掘的一个主要研究内容。关联规则描述了给定数据项集之间的有趣联系。目前,已经提出了许多挖掘关联规则的算法,其中最著名的是Apriori算法及其变形。针对Apfiofi算法中频繁项集产生效率低和产生无用规则、丢失有用规则两个核心问题,本文提出了两种改进的Apfiofi算法,它们能有效提高频繁集的产生效率和产生更为合理的关联规则。本文主要工作包括以下几个方面。

1、本文首先概述了数据挖掘理论和发展,以及主要的数据挖掘技术;然后研究了关联规则挖掘的步骤。对经典的Apriori算法做了全面的分析并指出算法的不足。

2、

针对Apriori算法的不足,提出了一种基于事务标号集的Apriori改进

on

算法——BTA(Based

TIDsets

Apriori)算法。BTA算法的特点在于:在首次扫描

数据库生成候选卜项集的同时,记住包含每一个项集的事务标识符TID集合。这样,只要统计候选项集所对应的TI

数据挖掘Apriori算法C++实现

标签:文库时间:2025-03-17
【bwwdw.com - 博文网】

- --

一、原Apriori算法

1、算法原理:

该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递推的方法

(1)L1 = find_frequent_1-itemsets(D); // 挖掘频繁1-项集,比较容易

(2)for (k=2;Lk-1 ≠Φ;k++) {

(3)Ck = apriori_gen(Lk-1 ,min_sup); // 调用apriori_gen方法生成候选频繁k-项集

(4)for each transaction t ∈D { // 扫描事务数据库D

(5)Ct = subset(Ck,t);

(6)for each candidate c ∈Ct

(7)c.count++; // 统计候选频繁k-项集的计数

(8)}

(9)Lk ={c ∈Ck|c.count≥min_sup} // 满足最小支持度的k-

关联规则挖掘的过程

标签:文库时间:2025-03-17
【bwwdw.com - 博文网】

关联规则挖掘的过程

关联规则挖掘过程主要包含两个阶段:第一阶段必须先从资料集合中找出所有的高频项目组(Frequentitemsets),第二阶段再由这些高频项目组中产生关联规则(Association Rules)。

关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(Large Itemsets)。高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。一项目组出现的频率称为支持度(Support),以一个包含A与B两个项目的2-itemset为例,我们可以经由公式(1)求得包含{A,B}项目组的支持度,若支持度大于等于所设定的最小支持度(Minimum Support)门槛值时,则{A,B}称为高频项目组。一个满足最小支持度的k-itemset,则称为高频k-项目组(Frequent k-itemset),一般表示为Large k或Frequent k。算法并从Large k的项目组中再产生Large k+1,直到无法再找到更长的高频项目组为止。 关联规则挖掘的第二阶段是要产生关联规则(Association Rules)。从高频项目组产生关联规则,是利用前一步骤的高频k-项目组来产生规则,在最小信赖度(Mi

数据挖掘算法(1)-Apriori算法 - 20130224 - 读书笔记

标签:文库时间:2025-03-17
【bwwdw.com - 博文网】

一、 算法概念引入

? 什么是关联规则

按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。

数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。Agrawal等于1993年首先提出了挖掘顾客交易数据库中项集间的关联规

则问题,以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。他们的工作包括对原有的算法进行优化,如引入随机采样、并行的思想等,以提高算法挖掘规则的效率;对关联规则的应用进行推广在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。

? 经典案例1:尿布和啤酒的故事 关于这个算法有一个非常有名的故事:\尿布和啤酒\。故事是这样的:美国的妇女们经常会嘱咐她们的丈夫下班后为孩子买尿布,而丈夫在买完尿布后又要顺手买回自己爱喝的啤酒,因此啤酒和尿布在一起被购买

多种关联规则挖掘算法的研究与分析_王金甫

标签:文库时间:2025-03-17
【bwwdw.com - 博文网】

多种关联规则挖掘算法的研究与分析

王金甫觹

要:本文首先介绍关联规则的基本概念,对关联规则算法进行了详细地分析和研究,就目前针对提高该算法效率的各种优

化技术也进行了详细地描述与分析,并说明各改进算法在各商业领域中的应用。

关键词:数据挖掘;关联规则;遗传算法

文献标识码:A中图分类号:TP311.12

WangJinfu

文章编号:1002-2422(2011)01-0004-02

ResearchandAnalysisofAVarietyofAssociationRuleMiningAlgorithm

Abstract:

Thepaperfirstintroducesthebasicconceptsofassociationrules,Associationrulesalgorithmfordetailedanalysisa-ndresearch.Thealgorithmforimprovingthecurrentefficiencyofvariousoptimizationtechniqueshavealsobeende-scribedandanalyzedindetail,anddescribestheimprovedalgorithminallare

数据挖掘关联规则文献综述

标签:文库时间:2025-03-17
【bwwdw.com - 博文网】

Apriori算法综述

系 别:软件学院 专 业:10软件工程 姓 名:傅昱 学 号:320107101147

摘要:本文介绍了关联规则中Apriori算法的研究情况,关联规则挖掘的Apriori算法是数据库挖掘的最经典算法并得到广泛应用,在介绍关联规则挖掘和Apriori算法的基础上指出传统算法应用中衡量标准的不足,并指出了Apriori算法在实际中的应用领域,展望了关联规则中Apriori算法的未来研究方向[1]。

关键字:数据挖掘;关联规则;Apriori算法;综述

一、引言

数据挖掘是从大量的数据中挖掘哪些令人感兴趣的、有用的、隐含的、先前未知的和可能有用的模式或知识[2] 。关联规则挖掘首先是用来发现购物篮数据事务中各项之间的有趣联系。从那以后,关联规则就成为数据挖掘的重要研究方向,它是要找出隐藏在数据间的相互关系。定义为,设I={I1,I2…Im}是m个不同项的项集,X∈I,Y∈I,并且x和Y是不相交的项集,即X∩Y=Φ[3,11]。关联规则挖掘问题首先是由R.Agrawal等人于1993年提出的,而后又进一步提出了著名的Apriori算法,该算法的主要思想是首先寻找给定数据