数学直线与平面平行的性质
“数学直线与平面平行的性质”相关的资料有哪些?“数学直线与平面平行的性质”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学直线与平面平行的性质”相关范文大全或资料大全,欢迎大家分享。
直线、平面平行的判定与性质
考点3 直线、平面平行的判定与性质
1.(徐州市2014届高考信息卷)如图,在梯形ABCD中,AB//CD,AD DC CB a, ABC 60o.平面ACEF 平面ABCD,四边形ACEF是矩形,点M在线段EF上.
(1)求证:BC 平面ACEF;
(2)当FM为何值时,AM 平面BDE?证明你的结论.
zl066
第1题图
【考点】线面垂直的判定定理;线面平行的判定定理.
【解】(1)证明:由题意知,ABCD为等腰梯形,且AB
2a,AC, 所以AC BC,
又平面ACEF 平面ABCD,平面ACEF 平面ABCD AC,
所以BC 平面ACEF. …………………6分
,AM 平面BDE. …………………8分 在梯形ABCD中,设AC BD N,连结EN,则CN:NA 1:2,
(2
)当FM
因为FM
,EF AC , ,又EM AN, 3
所以四边形EMAN为平行四边形,…………11分
所以AM NE,
又NE 平面BDE,AM 平面BDE,
所以AM 平面BDE. …………………14分
所以EM
AN=
zl067
第1题图
2. (江苏省南通市2015届高三第一次模拟考试数学试题)如图,在直三棱柱ABC A
直线、平面平行的判定与性质
考点3 直线、平面平行的判定与性质
1.(徐州市2014届高考信息卷)如图,在梯形ABCD中,AB//CD,AD DC CB a, ABC 60o.平面ACEF 平面ABCD,四边形ACEF是矩形,点M在线段EF上.
(1)求证:BC 平面ACEF;
(2)当FM为何值时,AM 平面BDE?证明你的结论.
zl066
第1题图
【考点】线面垂直的判定定理;线面平行的判定定理.
【解】(1)证明:由题意知,ABCD为等腰梯形,且AB
2a,AC, 所以AC BC,
又平面ACEF 平面ABCD,平面ACEF 平面ABCD AC,
所以BC 平面ACEF. …………………6分
,AM 平面BDE. …………………8分 在梯形ABCD中,设AC BD N,连结EN,则CN:NA 1:2,
(2
)当FM
因为FM
,EF AC , ,又EM AN, 3
所以四边形EMAN为平行四边形,…………11分
所以AM NE,
又NE 平面BDE,AM 平面BDE,
所以AM 平面BDE. …………………14分
所以EM
AN=
zl067
第1题图
2. (江苏省南通市2015届高三第一次模拟考试数学试题)如图,在直三棱柱ABC A
直线与平面平行的性质(教学设计)
※教学设计
课题:直线与平面平行的性质
教材:普通高中课程标准实验教科书人教A版数学必修2§2.2.3 授课教师:湖南师大附中海口中学 李明 授课时间:2010年6月
【三维目标】
1.知识与技能
通过教师的适当引导和学生的自主学习,使学生由直观感知获得猜想,经过逻辑论证,推导出直线与平面平行的性质定理,并掌握这一定理.
2.过程与方法
通过直观感知和操作确认的方法,发展几何直觉、运用图形语言进行交流的能力;体会和感受通过自己的观察、操作等活动进行合情推理发现并获得数学结论的过程;通过直线与平面平行的性质定理的实际应用,让学生体会定理的现实意义与重要性. 3.情感、态度、价值观
通过主动参与、积极探究的学习过程,提高学习数学的自信心和积极性,培养合作意识和交往能力,领悟化归与转化的数学思想,提高学生分析解决问题的能力.
【教学重点与难点】
1.教学重点 直线与平面平行的性质定理.
2.教学难点 综合应用线面平行的判定定理和性质定理. 【教学过程】
教学内容 【回顾旧知】 直线与平面平行判定定理的内容. 通过复习直线与平面平行的判定定理,温故而知新,为后面线线平行 与线面平行的相互转化做铺垫. 师生互动
【新课引入】
高一数学《2.2.3直线与平面与平面平行的性质》
2.2.3直线与平面 平行的性质
复习引入1.直线与直线的位置关系有哪几种?
复习引入1.直线与直线的位置关系有
共面
相交平行
异面
复习引入1.直线与直线的位置关系有
共面
相交平行
异面2.直线与平面平行的判定方法:
复习引入1.直线与直线的位置关系有
共面
相交平行
异面2.直线与平面平行的判定方法:
⑴定义法;
复习引入1.直线与直线的位置关系有
共面
相交平行
异面2.直线与平面平行的判定方法:
⑴定义法; ⑵判定定理.
复习引入1.直线与直线的位置关系有
共面
相交平行
异面2.直线与平面平行的判定方法:
⑴定义法; ⑵判定定理.a b
复习引入1.直线与直线的位置关系有
共面
相交平行
异面2.直线与平面平行的判定方法:
⑴定义法; 线线平行 ⑵判定定理. 线面平行a b
思考问题 1. 已知直线a与平面 平行,那么直线a与平面 内的直线有什么位置关系? a
思考问题 1. 已知直线a与平面 平行,那么直线a与平面 内的直线有什么位置关系? a 异面 或 平行
思考问题 1. 已知直线a与平面 平行,那么直线a与平面 内的直线有什么位置关系? a 异面 或 平行 2. 什么条件下,平面 内的直线与直线a平行 呢?
思考问题 1. 已知直线a与平面 平行,那么直线a与平面 内的直线有什
2.2.3直线与平面平行的性质定理
直线与平面平行的性质定理
复习1. 直线和平面有哪几种位置关系?有什么特征
平行、相交、在平面内 2. 直线和平面平行的判定定理 如果平面外的一条直线和平面内的一条 直线平行,那么这条直线和这个平面平行.a b a // a // b a
b
思考(1)如果一条直线和一个平面平行,那么 这条直线和这个平面内的直线有怎样的位置 关系?
平行或异面(即不相交)a b
a b α
α
(2)已知直线a∥平面α,如何在平面α内找 出和直线a 平行的一条直线?
思考 如图,在长方体 ABCD-A1B1C1D1中,直 线A1B1//面CDD1C1. 由长方体性质,我们知道A1B1 // C1D1. D1
C1
A1 D AE
B1F
另一方面,我们发现 A1B1 // 面CDD1C 1 A1B1 面A1B1C 1 D1 C1D1 =面CDD1C 1 面A1B1C 1 D1C
B
猜想:过A1B1的平面A1B1FE与面CDD1C1交于直线EF, 则A1B1 / /EF?
直线与平面平行的性质定理如果一条直线与平面平行,经过这条直线的平面和 这个平面相交,那么这条直线与交线平行.
(1)该定理中有三 个条件: 缺一不可!!!
a //
β a
高中数学 必修二 同步练习 专题2.2.3 直线与平面平行的性质、平面与平面平行的性质(原卷版)
高中数学必修二人教版同步练习
一、选择题
1.已知,a b 表示直线,,,αβγ表示平面,则下列说法中正确的是
A .,a b α
βα=?,则a b ∥ B .a αβ=,a b ∥,则b α∥且b β∥
C .,,,a b a b ββαα??∥∥,则αβ∥
D .αβ∥,a αγ=,b βγ=,则a b ∥
2.过平面α外的直线l ,作一组平面与α相交,如果所得的交线为a ,b ,c ,…,则这些交线的位置关系为
A .都平行
B .都相交且一定交于同一点
C .都相交但不一定交于同一点
D .都平行或交于同一点 3.在空间四边形ABCD 中,
E 、
F 、
G 、
H 分别是AB 、BC 、CD 、DA 上的点,当BD ∥平面EFGH 时,下
面结论正确的是
A .E 、F 、G 、H 一定是各边的中点
B .G 、H 一定是CD 、DA 的中点
C .BE ∶EA =BF ∶FC ,且DH ∶HA =DG ∶GC
D .A
E ∶EB =AH ∶HD ,且B
F ∶FC =D
G ∶GC
4.在长方体1111ABCD A B C D -中,若经过D 1B 的平面分别交AA 1和CC 1于点E ,F ,则四边形1D EBF 的
形状是
A .矩形
B .菱形
C .平行四边形
D .正方形
高二数学直线与平面平行
课 题:9.3直线与平面平行(共3课时)
第一课时:直线与平面平行的判定定理 第二课时:直线与平面平行的性质定理
第三课时:直线与平面平行的判定及性质定理的应用
1、直线与平面的位置关系
教学目的:了解直线与平面的三种位置关系,能用符号语言表示这些关系并能画出正确的图形。 问1:直线与平面可以有几个公共点? 问2:直线和平面的位置关系如何?
问3:如何用图形和符号表示直线和平面的三种位置关系?
问4:直线在平面外指的是什么?
1.直线和平面的位置关系
(1)直线在平面内(无数个公共点);
(2)直线和平面相交(有且只有一个公共点);
(3)直线和平面平行(没有公共点)——用两分法进行两次分类.
它们的图形分别可表示为如下,符号分别可表示为a??,a???A,a//?.
aaa??A?
字母表示 判定 性质 定义 公共点个数 图形
直线在平面内 直线直线与平在平面相交 面外 直线与平面平行 强调:(1)画图要点;(2)图形——符号——文字语言的相互转换。
问5:正方体ABCD-A1B1C1D1中, (1) 哪些棱所在直线在平面ABCD内; (2) 哪些面对角线所在直线在平面ABCD内; (3)
平面与平面平行的判定与性质
平面与平面平行的判定与性质
一、选择题
1.平面α∥平面β,点A、C∈α,点B、D∈β,则直线AC∥直线BD的充要条件是() A.AB∥CDB.AD∥CB
C.AB与CD相交D.A、B、C、D四点共面
2.“α内存在着不共线的三点到平面β的距离均相等”是“α∥β”的() A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要的条件 3.平面α∥平面β,直线aìα,P∈β,则过点P的直线中() A.不存在与α平行的直线 B.不一定存在与α平行的直线 C.有且只有—条直线与a平行 D.有无数条与a平行的直线 4.下列命题中为真命题的是() A.平行于同一条直线的两个平面平行 B.垂直于同一条直线的两个平面平行
C.若—个平面内至少有三个不共线的点到另—个平面的距离相等,则这两个平面平行. D.若三直线a、b、c两两平行,则在过直线a的平面中,有且只有—个平面与b,c均平行. 5.已知平面α∥平面β,且α、β间的距离为d,lìα,l′ìβ,则l与l′之间的距离的取值范
2018学年高中数学2.2直线平面平行的判定及其性质2.2.2平面与平面
第二章 2.2 2.2.2 直线与平面平行的性质
A级 基础巩固
一、选择题
1.在长方体ABCD-A′B′C′D′中,下列结论正确的是 ( D ) A.平面ABCD∥平面ABB′A′ B.平面ABCD∥平面ADD′A′ C.平面ABCD∥平面CDD′C′ D.平面ABCD∥平面A′B′C′D′
[解析] 长方体ABCD-A′B′C′D′中,上底面ABCD与下底面A′B′C′D′平行,故选D.
2.下列命题正确的是 ( D )
①一个平面内有两条直线都与另外一个平面平行,则这两个平面平行; ②一个平面内有无数条直线都与另外一个平面平行,则这两个平面平行; ③一个平面内任何直线都与另外一个平面平行,则这两个平面平行; ④一个平面内有两条相交直线都与另外一个平面平行,则这两个平面平行. A.①③
B.②④
C.②③④
D.③④
[解析] 如果两个平面没有任何一个公共点,那么我们就说这两个平面平行,也即是两个平面没有任何公共直线.
对于①:一个平面内有两条直线都与另外一个平面平行,如果这两条直线不相交,而是平行,那么这两个平面相交也能够找得到这样的直线存在.
对于②:一个平面内有无数条直线都与另外一个平面平行,同①.
对于③:一个平
(试题2)2.2直线、平面平行的判定及其性质
高中数学 必修二
第1题. 已知 a, m, b,且m// ,求证:a//b.
答案:证明:
m// m//a a//b. a 同理 m//b
m
第2题. 已知: b,a// ,a// ,则a与b的位置关系是( ) A.a//b C.a,b相交但不垂直
答案:A.
第3题. 如图,已知点P是平行四边形ABCD所在平面外的一点,E,F分别是PA,BD上的点且PE∶EA BF∶FD,求证:EF//平面PBC.
B.a b
D.a,b异面
答案:证明:连结AF并延长交BC于M.连结PM,
高中数学 必修二
∵AD//BC,∴
BFFD
MFFA
,又由已知
PEEA
BFFD
,∴
PEEA
MFFA
.
由平面几何知识可得EF//PM,又EF PBC,PM 平面PBC,
∴EF//平面PBC.
第4题. 如图,长方体ABCD A1B1C1D1中,E1F1是平面A1C1上的线段,求证:E1F1//平面AC.
答案:证明:如图,分别在AB和CD上截取AE A1E1,DF D1F1,连接EE1,FF1,
EF.
∵长方体AC1的各个面为矩形,
∴A1E1平行且等于AE,D1F1平行且等于DF,
故四边形AEE1A1,DFF1D1为平行四边形.