一次函数在初中数学的地位
“一次函数在初中数学的地位”相关的资料有哪些?“一次函数在初中数学的地位”相关的范文有哪些?怎么写?下面是小编为您精心整理的“一次函数在初中数学的地位”相关范文大全或资料大全,欢迎大家分享。
初中数学专项训练:一次函数(一)
初中数学专项训练:一次函数(一)
一、选择题
1.如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:
①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;
②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;
③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.
其中,符合图中所示函数关系的问题情境的个数为
A.0 B.1 C.2 D.3
2.某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x的关系的大致图象是
A. B. C.
D.
3.对于点A(x1,y1),B(x2,y2),定义一种运算:A?B??x1?x2???y1?y2?.例如,A(-5,4),B(2,﹣3),A?B???5?2?4?
一次函数25.5 一次函数的应用
《一次函数》常考题一次函数的应用
解答题
151.(2004?福州)如图所示,l1和l2分别表示一种白炽灯和一种节能灯的费用y(元)与照明时间x(小时)的函数关系图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(费用=灯的售价+电费) (1)根据图象分别求出l1,l2的函数关系式; (2)当照明时间为多少时,两种灯的费用相等?
(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.
152.(2001?南京)某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克),随时间x(小时)的变化如图所示. 当成人按规定剂量服药后,
(1)分别求出x≤2和x≥2时,y与x之间的函数关系式;
(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?
﹣3
153.(2002?大连)某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办了海产品运输业务.已知运输路程为120千米,
初中数学第14章一次函数
明镜学院讲义 讲课人:邓威
第十四章 一次函数
测试1 变量与函数
学习要求
1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围)
2.能初步理解函数的概念;能初步掌握确定常见简单函数的自变量取值范围的基本方法;给出自变量的一个值,会求出相应的函数值.
3.对函数关系的表示法(如解析法、列表法、图象法)有初步认识.
课堂学习检测
一、填空题
1.设在某个变化过程中有两个变量x和y,如果对于变量x取值范围内的______,另一个变量y都有______的值与它对应,那么就说______是自变量,______是的函数.
2.设y是x的函数,如果当x=a时,y=b,那么b叫做当自变量的值为______时的______. 3.对于一个函数,在确定自变量的取值范围时,不仅要考虑______有意义,而且还要注意问题的______.
4.飞轮每分钟转60转,用解析式表示转数n和时间t(分)之间的函数关系式: (1)以时间t为自变量的函数关系式是______. (2)以转数n为自变量的函数关系式是______.
5.某商店进一批
初中数学第14章一次函数
明镜学院讲义 讲课人:邓威
第十四章 一次函数
测试1 变量与函数
学习要求
1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围)
2.能初步理解函数的概念;能初步掌握确定常见简单函数的自变量取值范围的基本方法;给出自变量的一个值,会求出相应的函数值.
3.对函数关系的表示法(如解析法、列表法、图象法)有初步认识.
课堂学习检测
一、填空题
1.设在某个变化过程中有两个变量x和y,如果对于变量x取值范围内的______,另一个变量y都有______的值与它对应,那么就说______是自变量,______是的函数.
2.设y是x的函数,如果当x=a时,y=b,那么b叫做当自变量的值为______时的______. 3.对于一个函数,在确定自变量的取值范围时,不仅要考虑______有意义,而且还要注意问题的______.
4.飞轮每分钟转60转,用解析式表示转数n和时间t(分)之间的函数关系式: (1)以时间t为自变量的函数关系式是______. (2)以转数n为自变量的函数关系式是______.
5.某商店进一批
初中数学一次函数试讲稿
教学目标
情感态度与价值观目标:
感受数学是来源于生活并用于生活,激发学生学习数学的热情
过程与方法目标:
通过对实际问题的研究过程,渗透函数模型的思想,培养学生应用一次函数解决问题的应用知识的能力;
知识与技能目标:
理解一次函数的概念,能根据条件写出一次函数表达式;
教学重点
一次函数、正比例函数的概念及关系,会根据已知信息写出一次函数的表达式。
教学难点
一次函数、正比例函数的概念及关系,会根据已知信息写出一次函数的表达式。
教学过程
(一)激趣导入
引出乌龟和兔子赛跑的路程时间图,提问:乌龟的路程图象有什么特点?复习正比例函数,从而引出今天课题---一次函数。
(二)教授新课
出示课本问题2以及思考题,师生探究得到:y=5-6x;
总结得出一次函数的定义,y=kx+b,k≠0;b=0,正比例函数.
(三)课堂小结
请学生代表汇报,老师总结完善
试讲稿
同学们,大家好,上课!
老师想问大家,你们想喜欢玩吗,都喜欢啊,老师也非常喜欢,而且老师特别喜欢乘坐火车去旅行,这不,老师去年乘坐的普通火车去西安旅游,火车以60千米/时的速度匀速行驶,行驶了a小时,大家能写出行驶过的路程S与所用的时间
初中数学组卷一次函数解析
初中数学组卷一次函数
一.选择题(共15小题) 1.(2010春?高州市期末)小明一出校门先加速度行驶,然后匀速行驶一段后,在距家门不远的地方开始减速,最后停下,下面的图可以近似地刻画出他在这一过程中的时间与速度的变化情况是( ) A.B. C. D.
2.(2009?滨州)小明外出散步,从家走了20分钟后到达了一个离家900米的报亭,看了10分钟的报纸然后用了15分钟返回到家.则下列图象能表示小明离家距离与时间关系的是( ) A.B. C. D. 3.(2014秋?揭西县校级期末)一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是( ) A.B. C. D. 4.(2014秋?肥东县期末)如图所示,表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象是( ) A.B. C. D. 5.(2005?湖州)如图:三个正比例函数的图象分别对应的解析式是①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是( )
A.a>b>c B. c>b>a C. b>a>c D. b>c>a 6.(2014?杭州模拟)若正比例
19.2.2一次函数(2)一次函数的图像和性质
提问复习 1、什么叫正比例函数、一次函数?它 们之间有什么关系? 一般地,形如 y=kx(k是常数,k≠0) 的函数, 叫做正比例函数; 一般地,形如 y=kx+b(k,b是常数,k≠0) 的函数,叫 做一次函数。
当b=0时,y=kx+b就变成了 y=kx ,所以说正 比例函数是一种特殊的一次函数。 2、正比例函数的图象是什么形状? 正比例函数的图象是(经过原点的一条直线
)
3、正比例函数 y=kx(k是常数,k≠0)中, k的正负对函数图象有什么影响?y=kx 图 象y
性 质经过一、三象限 y随x增大而增大
K>0y
x
K<0
x
经过二、四象限 y随x增大而减小
既然正比例函数是特殊的一次 函数,正比例函数的图象是直线, 那么一次函数的图象也会是一条直 线吗? 它们图象之间有什么关系? 一次函数又有什么性质呢?
探索新知1、认识一次函数的图像画图:请大家用描点法在同一坐标系中画出函数函数y=-2x, y=-2x+3,y=-2x-3的图象。
1、列表 x y=-2x
2、描点 … -2 … 4 -1 0
3、连线 2 … -2 -4 … 1 -1 … 1
25 -1
03
y=-2x+3 … 7 y=-2x-3 … 1
-3 -5 -7 …
比一比:正比例函
一次函数的教案
课题:变量与函数(1) 总第1课时
教学目标:认识变量、常量;学会用含一个变量的代数式表示另一个变量;在理解掌握函数概念的基础上,确定函数关系式.
教学重点:认识变量、常量;用式子表示变量间关系. 教学难点:用含有一个变量的式子表示另一个变量. 教学过程:
一、创设情境,引入新课:
情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.?行驶时间为t小时.
1.请同学们根据题意填写下表: t/时 1 2 3 4 5 s/千米 2.在以上这个过程中,变化的量是________.不变化的量是__________. 3.试用含t的式子表示s.s= ,t的取值范围是 .
4.这个问题反映了匀速行驶的汽车所行驶的路程s随行驶时间t的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,如上例中的时间t、?路程s,有些量的数值是始终不变的,如上例中的速度60千米/小时. 二、深入探究,得出结论:
问题二:每张电影票的售价为10元,如果早场售出票150张,
一次函数的应用
一次函数的应用
◆【课前热身】
1.在平面直角坐标系中,函数y??x?1的图象经过( )
A.一、二、三象限 B.二、三、四象限 C.一、三、四象限 D.一、二、四象限
2.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A.12分钟
B.15分钟
C.25分钟
D.27分钟
3.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为( )
y(元)900300O3050(kg)x
A.20kg B.25kg C.28kg D.30kg 4.一次函数y?2x?3的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限 ◆【考点聚焦】
??一般式y=kx+b(k?0)概念???正比例函数y=kx(
一次函数的应用
一次函数的应用
姓名:
基础题型演练:
1、某出版社出版一种适合中学生阅读的科普读物,若该读物首次印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:
次函数,求这个一次函数的解析式(不要求写出x的取值范围);
(2)如果出版社投入48000元,那么能印读物多少册?
2、为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7 m3时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7 m3的部分每立方米收费
1.5元并加收0.4元的城市污水处理费.设某户每月用水量为x(m3),应交水费为y(元).
(1)分别写出未超过7 m3和多于7 m3时,y与x的函数关系式;(2)如果某单位共有50户,某月共交水费541.6元,且每户的用水量均未超过10 m3,求这个月用水未超过7 m3的用户最多可能有多少户?
3、如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km) 之间的函数关系图象. ①根据图象,写出当x≥3时该图象的函数关系式; ②某人乘坐2.5km,应付多少钱?
③某人乘坐13km,应付多少钱?
④若某人付车费30.8元,出租车行驶了多少千米?
例1:学校有一批复印任务,原来有甲复印社承接,按每100页40元计费.