数学分析选论答案
“数学分析选论答案”相关的资料有哪些?“数学分析选论答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学分析选论答案”相关范文大全或资料大全,欢迎大家分享。
《数学分析选论》习题全解 ch2
《数学分析选论》习题解答2
第 二 章 连 续 性
1. 设x,y??n,证明:
||x?y||2?||x?y||2?2(||x||2?||y||2).
证 由向量模的定义, ||x?y||?||x?y||?222(x?y)?(x?y)?ii?ii
i?1nn2ni?1 ?2i?1?(xi2?yi2)?2(||x||2?||y||2). □
?2. 设S??n,点x??n到集合S的距离定义为
?(x,S)?inf?(x,y).
y?S证明:(1)若S是闭集,x?S,则?(x,S)?0; (2)若S?S?Sd( 称为S的闭包 ),则
S?x??n|?(x,S)?0.
证 (1)倘若?(x,S)?0,则由?(x,S)的定义,?yn?S,使得
???(x,yn)?1,n?1,2,?. n因 x?S,故yn?x,于是x必为S的聚点;又因S是闭集,故x?S,这就导致矛盾.所以证得?(x,S)?0.
(2)?x?S.若x?S,则?(x,S)?0显然成立.若x?S,则x?Sd(即x为
S的聚点),由聚点定义,???0,U?(x;?)?S??,因此同样有
y?Sinf?(x,y)??(x,S)?0.
11
反之,凡
数学分析答案
第2,3,11章 习题解答
习题2-1
1. 若自然数n不是完全平方数.证明n是无理数. 证明 反证法. 假若n?pq(p,q?N,且p,q互质),于是由nq2?p2可知,q2是
p2的因子,从而得q2?1即p2?n,这与假设矛盾.
2. 设a,b是两个不同实数.证明在a和b之间一定存在有理数.
证明 不妨设a 1 mm综上可得 na nn3. 设x为无理数.证明存在无穷多个有理数 pq(p,q为整数,q?0)使得x?pq?1q2. 证明 反证法. 假若只有有限个有理数满足不等式,即 x?令 piqi< 1qi2 , (i?1,2,3?,m) ??p??min?x?ii?1,2,3,?,m? qi??取 N:N?1, 且选取整数p,q(0?q?N), 使得 ?p111, x??N?2 qqqNp1??N???, qqq qx?p?但因q是正整数,故又有x?从而可知 习题2-2 ppi? (i?1,2,3,?m), 这与假设矛盾. qqi1.求下列数集的上、下确界. (1)?1???1??1? n?N?, (2)?(1?)nn?N?,
数学分析选讲课程教学标准
数学分析
《数学分析选讲》课程教学标准 第一部分:课程性质、课程目标与要求
《数学分析选讲》课程,是我院数学与应用数学、信息与计算科学本科专业的选修课程,是为报考数学专业硕士研究生及对分析感兴趣的学生所开的一门选修课。本课程的目的是通过本课程的学习,使学生对已学过的数学分析的知识进行巩固、加深、提高,并扩大所学的知识,更好地掌握分析的基本思想、基本方法,使对所学的数学分析知识能做到触类旁通。
教学时间应安排在第五学期或第六学期。这时,学生已学完《数学分析》的课程,正准备硕士研究生的入学考试,且为了学生更好地利用时间,因此可把这门课安排在第四学期至第五学期的暑假及第六学期至第七学期的暑假。
第二部分:教材与学习参考书
本课程拟采用由裴礼文编写的、高等教育出版社1993年出版的《数学分析中的典型问题与方法》第一版一书,作为本课程的主教材。
为了更好地理解和学习课程内容,建议学习者可以进一步阅读以下几本重要的参考书:
1、数学分析讲义,陈纪修、於崇华、金路,高等教育出版社,1999
2、数学分析解题方法600例,李世金、赵洁,东北师范大学出版社,1992
第三部分:教学内容纲要和课时安排
第一章 一元函数的极限
复习数列极限和无穷大量、函数极限、数列的上、下极限的概念和
数学分析选讲课程教学标准
数学分析
《数学分析选讲》课程教学标准 第一部分:课程性质、课程目标与要求
《数学分析选讲》课程,是我院数学与应用数学、信息与计算科学本科专业的选修课程,是为报考数学专业硕士研究生及对分析感兴趣的学生所开的一门选修课。本课程的目的是通过本课程的学习,使学生对已学过的数学分析的知识进行巩固、加深、提高,并扩大所学的知识,更好地掌握分析的基本思想、基本方法,使对所学的数学分析知识能做到触类旁通。
教学时间应安排在第五学期或第六学期。这时,学生已学完《数学分析》的课程,正准备硕士研究生的入学考试,且为了学生更好地利用时间,因此可把这门课安排在第四学期至第五学期的暑假及第六学期至第七学期的暑假。
第二部分:教材与学习参考书
本课程拟采用由裴礼文编写的、高等教育出版社1993年出版的《数学分析中的典型问题与方法》第一版一书,作为本课程的主教材。
为了更好地理解和学习课程内容,建议学习者可以进一步阅读以下几本重要的参考书:
1、数学分析讲义,陈纪修、於崇华、金路,高等教育出版社,1999
2、数学分析解题方法600例,李世金、赵洁,东北师范大学出版社,1992
第三部分:教学内容纲要和课时安排
第一章 一元函数的极限
复习数列极限和无穷大量、函数极限、数列的上、下极限的概念和
数学分析 答案AA
玉林师范学院课程期末考试试题参考答案及评分标准 (2006——2007学年度第二学期) 命题教师:梁志清 命题教师所在系:数计系 试卷类型:(A)
装
订 线 装 订 线
课程名称:数学分析Ⅳ 考试专业:数学与应用数学 年级: 2005
题号 应得分 一 20 二 15 三 42 四 7 五 16 总分 一 填空题 (每小题2分)
1 1; 2 (n?1)!; 3
2; 4 1; 5 1; 6 2?10dx?f(x,y)dy;
x17 x3?y3?3xy?c;8
2?6;9 ?a;10 。 34二 单项选择题 (每小题3分)
1 A; 2 B; 3 B; 4 D;5 C。
三 计算题
22 1 L:x?y?2y,令x?cos?,y?1?sin?,则0???2? ??2分
于是ds?d? ??3分
?(xL2?y)ds??2(1?sin?)d?
数学分析 答案AA
玉林师范学院课程期末考试试题参考答案及评分标准 (2006——2007学年度第二学期) 命题教师:梁志清 命题教师所在系:数计系 试卷类型:(A)
装
订 线 装 订 线
课程名称:数学分析Ⅳ 考试专业:数学与应用数学 年级: 2005
题号 应得分 一 20 二 15 三 42 四 7 五 16 总分 一 填空题 (每小题2分)
1 1; 2 (n?1)!; 3
2; 4 1; 5 1; 6 2?10dx?f(x,y)dy;
x17 x3?y3?3xy?c;8
2?6;9 ?a;10 。 34二 单项选择题 (每小题3分)
1 A; 2 B; 3 B; 4 D;5 C。
三 计算题
22 1 L:x?y?2y,令x?cos?,y?1?sin?,则0???2? ??2分
于是ds?d? ??3分
?(xL2?y)ds??2(1?sin?)d?
数学分析2
▇ ▇ 数学分析
《数学分析Ⅰ》第2讲 教学内容:实数系的连续性
第二章 数列极限
§2.1实数系的连续性
一. 实数系的产生(历史沿革)
从人类历史的开始,人类就逐步认识了自然数,1,2,3,?,n,?
自然数集 整数集 有理数集 实数集
解决的减法解决对除法?????????? ? 的封闭性的封闭性解决对开方?????的封闭性? ? ?
对加法封闭 对加减乘封闭 对加减乘除封闭 对减法不封闭 对除法不封闭 对开方不封闭
2000多年前,毕达哥拉斯学派认为:有理数集是最完美的数集;世界上的万事万物都可以用有理数表示。
但是,毕达哥拉斯的一个“叛逆”的学生,发现了边界为1的正方形的对角线长度不是一个有理数,即
数轴上点c不是一个有理数点。
例2.1.1设c?2,试证明:c不是一个有理数。
2p,则q222p2?c2q2?2q2,所以2|p,不妨设p?2p1,故(2p1)?2q,所以2p1?q, 所以2|q,记q?2q1,即p?2p1,q?2q1,这与 (p,q)
数学分析习题
《数学分析Ⅱ》期中考试题
一、选择题(每小题3分,共30分)
1、曲线2x2 +3y2 + z2 =9, z2 =3x2 + y2 在点 ( 1, -1, 2 )的法平面方程是( 1 )
A、8x+10y+7z-12=0; B、8x+10y+7z+12=0;C、8x -10y+7z-12=0; D、8x+10y+7z+12=0 2、L为单位圆周,则
??Lyds?( 4 )
A、1 B、2 C、3 D、4 3、L为从( 1, 1, 1 )到( 2, 3, 4 )的直线段,则
?Lzdx?xdz= ( 3 )
A、3 B、5 C、7 D、9 4、
??x?y?13?x?y?dxdy=( 2 )
A、2 B、4 C、6 D、8 5、
?0?12dy?21?y1?x0f(x,y)dx,改变积分顺序得( 1 ) f(x,y)dy B、?dx?121?x?11?x?1A、C、
??12dx?dx?f(x,y)dy f(x,y)dy
1?x01f(x,y)dy D、?dx?126、V=[-2, 5]?[
数学分析试卷
第十三章 函数项级数 应用题
第十三章
函数项级数 计算题
1.设S(x)=?ne?nx x>0,计算积分?ln3ln2S(t)dt
2..判断级数?(?1)nxnn1?xn(x>0)的敛散性.
第十三章 函数项级数 计算题答案
1.?ne?nx在[ln2,ln3]上连续且一致收敛
?它在[ln2,ln3]可逐积分 (得4分)
??ln3?s(t)dt?ln3ne?nxdxln2?? (得6分)
n?1ln2? =?[(1)n?(1)n23]?1?1?1 (得8分)
n?11?121?12 32. 对交错级数?(?1)nn 由莱布尼兹判别法知它收敛 (得3分)
而
xn1?xn 当x>1时,单增有界 ; x=1时,值为
12 ; 当x<1时,单降为界 (得6分)
故由阿贝尔判别法知?(?1)nxnnn收敛
数学分析三试卷及答案
《数学分析》(三)――参考答案及评分标准
一. 计算题(共8题,每题9分,共72分)。
111. 求函数f(x,y)?3xsin?3ysin在点(0,0)处的二次极限与二重极限.
yx11解: f(x,y)?3xsin?3ysin?3x?3y,因此二重极限为0.……(4分)
yx1111因为lim3xsin?3ysin与lim3xsin?3ysin均不存在,
x?0yxy?0yx故二次极限均不存在。 ……(9分)
?z?xf(x?y),?y?y(x),2. 设? 是由方程组?所确定的隐函数,其中f和F分别
F(x,y,z)?0z?z(x)??dz具有连续的导数和偏导数,求.
dx解: 对两方程分别关于x求偏导:
dy?dz?f(x?y)?xf?(x?y)(?1), ??dxdx? ……(4分)
dydz?F?F?Fz?0。 xy?dxdx?dzFy?f(x?y)?xf?(x?y)(Fy?Fx)?解此方程组并整理得. ……(9分) dxFy?xf?(x?y)Fz
3. 取?,?为新自变量及w?w(?,v)为新函数,变换方程