相交线平行线压轴题

“相交线平行线压轴题”相关的资料有哪些?“相交线平行线压轴题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“相交线平行线压轴题”相关范文大全或资料大全,欢迎大家分享。

相交线与平行线培优题

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

第十二讲 相交线与平行线

板块一 相交线、对顶角、邻补角、垂直

相交直线:如果直线a与直线b只有一个公共点,则称直线a与直线b相交。 相交线的性质:两直线相交只有一个交点。

对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。 如图中,?1和?2,?3和?4是对顶角。

a 3O21对顶角的一个重要性质是:对顶角相等。 4b

邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做互为邻补角。

如图中,?1和?3,?1和?4,?2和?3,?2和?4互为邻补角。 a3O2 14b注意:互为邻补角的两个角一定互补,但两个角互补不一定是互为邻补角。

垂线:垂直是相交的一种特殊情况,两条直线互相垂直,其中一条叫另一条直线的垂线,它们的交点叫垂

足。

A如图所示,可以记作“AB?CD于O” 注意:

过直线外一点有且只有一条直线与已知直线垂直;

DCO

直线外一点与直线上各点连结的所有线段中,垂线段最短,简单说成:垂线段最短。

B

【例1】已知:如图1,直线AB、CD交于点O,且?AOD??BOC?120°,求?AOC的度数。

AOD图1BC

1

【例2】如图2,AB、CD、EF交于点O,?AOE?25°

相交线与平行线竞赛试题

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

1.如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为( )

A、80 B、50 C、30 D、20

2.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是( )

A、43° B、47° C、30° D、60° 3.如图,直线a∥b,那么∠x的度数是 _________ . 4.如图,AB∥CD,∠ABF=∠DCE。试说明:∠BFE=∠FEC。

AFECBD

O

5.如图,已知AB//CD,BE平分?ABC,DE平分?ADC,?BAD=70,

O

(1)求?EDC的度数;(2)若?BCD=40,试求?BED的度数.

5.如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,则∠ABD= _________ 度.

6.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.

7.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.

1

8.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.

9.如图,∠1+∠

平行线与相交线 docx提高

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

《平行线与相交线》全章的复习与巩固(提高) 一、选择题

1.(济南)已知,如图所示,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是( ).

A.相等 B.互余 C.互补 D.互为对顶角

2.一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )

A.第一次向左拐30°,第二次向右拐30°. B.第一次向右拐50°,第二次向左拐130°. C.第一次向左拐50°,第二次向左拐130°. D.第一次向左拐50°,第二次向右拐130°.

3.已知:如图,AB∥DE,∠E=65°,则∠B+∠C的度数是( ) .

A.135° B.115° C.65° D.35°

4.两条平行直线被第三条直线所截时,产生的八个角中,角平分线互相平行的两个角是( ).

A.同位角 B.同旁内角 C.内错角 D. 同位角或内错角

5. 如图所示,b∥c,a⊥b,∠1=130°,则∠2=( ). A.30° B. 40° C. 50° D. 60°

6. 如图,已知∠A=∠C,如果要判

平行线与相交线综合练习二

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

平行线与相交线综合练习

专题一 平行线中基本图形的应用

1.(2014?北仑区模拟)如图,已知两条线段AB∥CD,点E不在AB、CD所在的直线上.∠ABE=α,

∠CDE=β,∠BED=γ.当E点在不同位置时,α、β、γ之间的数量关系也会有所不同.请你再画出两种不同的情况,并写出α、β、γ之间的数量关系.

2.如图所示,已知CD∥EF,∠1+∠2=∠ABC,试判断AB与GF的位置关系,并说明理由.

3.如图,已知平面内有两条直线AB、CD,且AB∥CD,P为一动点.

(1)当点P移动到AB、CD之间时,如图(1),这时∠P与∠A、∠C有怎样的关系?证明你的结论;

(2)当点P移动到AB的外侧时,如图(2),是否仍有(1)的结论?如果不是,请写出你的猜想(不要求证明);

(3)当点P移动到如图(3)的位置时,∠P与∠A、∠C又有怎样的关系?证明你的结论; (4)若已知中的“AB∥CD”改为“AB、CD相交于O”,如图(4),则∠BAP、∠PCD、∠P、∠O之间有什么关系?证明你的结论.

1

4..(2005春?武昌区期末)如图1,已知AB∥CD,

(1)请说明∠B+∠G+∠D=∠E+∠F;

(2)若将图1变形成图2,上面的关系式是否仍成

相交线与平行线拔高(一) - 图文

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

同学你好,网校试题均为高清大图,如果你的文档出现显示不全的问题,请调整页边距,或将图片缩小查看。

第1题

第2题

第3题

第4题

第5题

第6题

第7题

第8题

第9题

第10题

试题答案

第1题:

正确答案:A 答案解析

第2题: 正确答案:D 答案解析

第3题: 正确答案:C 答案解析

第4题: 正确答案:A 答案解析

第5题: 正确答案:D 答案解析

第6题: 正确答案:D 答案解析

第7题: 正确答案:C 答案解析

第8题: 正确答案:B 答案解析

第9题: 正确答案:B 答案解析

第10题: 正确答案:C 答案解析

平行线与相交线综合练习二

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

平行线与相交线综合练习

专题一 平行线中基本图形的应用

1.(2014?北仑区模拟)如图,已知两条线段AB∥CD,点E不在AB、CD所在的直线上.∠ABE=α,

∠CDE=β,∠BED=γ.当E点在不同位置时,α、β、γ之间的数量关系也会有所不同.请你再画出两种不同的情况,并写出α、β、γ之间的数量关系.

2.如图所示,已知CD∥EF,∠1+∠2=∠ABC,试判断AB与GF的位置关系,并说明理由.

3.如图,已知平面内有两条直线AB、CD,且AB∥CD,P为一动点.

(1)当点P移动到AB、CD之间时,如图(1),这时∠P与∠A、∠C有怎样的关系?证明你的结论;

(2)当点P移动到AB的外侧时,如图(2),是否仍有(1)的结论?如果不是,请写出你的猜想(不要求证明);

(3)当点P移动到如图(3)的位置时,∠P与∠A、∠C又有怎样的关系?证明你的结论; (4)若已知中的“AB∥CD”改为“AB、CD相交于O”,如图(4),则∠BAP、∠PCD、∠P、∠O之间有什么关系?证明你的结论.

1

4..(2005春?武昌区期末)如图1,已知AB∥CD,

(1)请说明∠B+∠G+∠D=∠E+∠F;

(2)若将图1变形成图2,上面的关系式是否仍成

角、相交线和平行线评课稿

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

《角、相交线和平行线》评课稿

施老师的这节课“角、相交线和平行线”是几何图形的初步知识,是三角形和四边形的重要基础,在几何中占有重要的地位,下面我将从以下几个方面做出分析:

一、从教材处理教材上做出分析

施老师以多媒体课件的形式将本节课所讲的知识框架结构展示出来,同时以填空的形式复习的对应的概念、性质及定理,让学生达到复习的目的,同时针对各个知识点进行针对训练,让学生记住知识点的同时能够进行应用,既突出了重点,又突破了难点。 二、从教学程序上分析

施老师以复习知识框架—考点例题专项讲解—练习专项训练—考点总结的思路进行教学,教学思路设计符合复习课教学内容实际,符合学生实际,教学思路的层次分明,脉络清晰,结构严谨、环环相扣,过渡自然,时间分配合理,密度适中,效率高。讲与练时间搭配合理,教师活动与学生活动时间分配与教学要求一致。学生的个人活动和全班活动时间分配合理。 三、从教学方法上分析

在教学方法上采用了讲解法和谈论法,根据学生已学知识向学生提出一系列问题,通过师生问答的形式帮助学生复习、深化、系统化已学知识,激发了学生的思维调动了学生的积极性,培养了学生独立思考和语言表达能力。教学方法多样化让学生在掌握基础知识的前提下把所学的知识灵活

相交线与平行线经典试题一

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

相交线与平行线经典试题一

一、选择题(每题3分,总45分) 1、如图,∠1与∠2是对顶角的是(

8,如图5,∠1=∠2,则有( )A、 EB//CF B、 AB//CF C、 EB//CD, D、 AB//CD 9、如图6,已知∠1=80°, m//n, 则∠4=( )A、100°B、70°C、80° D、60° 10、如图7,AB//EF,BC//DE,∠B=40°则∠E=( )A、90°B、120°C、140°D、360

2 2 2 2 A d

B A A、 B、 C、 D、 F

a

2、如图1,∠AOC的邻补角是( ) D 1 5 D 2

A、∠BOC B、∠BOD C、∠BOC和∠AOD DA D P F

、 图7 图8 图9

11、如图8,∠1=∠2,∠5=70°则∠3=( )A、1

第 2讲 初一相交线与平行线动点提高题压轴题

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

第2讲 相交线与平行线动点提高题

知识点:

1、平行线的判定:

①同位角相等,两直线平行。②内错角相等,两直线平行。 ③同旁内角互补,两直线平行。

2、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。 3、平行线的性质:

①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

4、平移:①平移前后的两个图形形状大小不变,位置改变。②对应点的线段平行且相等。 平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

动点型问题是最近几年中考的一个热点题型,

所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 典型例题

例1.(1)如图(1),EF⊥GF,垂足为F,∠AEF=150°,∠DGF=60°. 试判断AB和CD的位置关系,并

第 2讲 初一相交线与平行线动点提高题压轴题

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

第2讲 相交线与平行线动点提高题

知识点:

1、平行线的判定:

①同位角相等,两直线平行。②内错角相等,两直线平行。 ③同旁内角互补,两直线平行。

2、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。 3、平行线的性质:

①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

4、平移:①平移前后的两个图形形状大小不变,位置改变。②对应点的线段平行且相等。 平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

动点型问题是最近几年中考的一个热点题型,

所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 典型例题

例1.(1)如图(1),EF⊥GF,垂足为F,∠AEF=150°,∠DGF=60°. 试判断AB和CD的位置关系,并