平行四边形及特殊平行四边形的性质

“平行四边形及特殊平行四边形的性质”相关的资料有哪些?“平行四边形及特殊平行四边形的性质”相关的范文有哪些?怎么写?下面是小编为您精心整理的“平行四边形及特殊平行四边形的性质”相关范文大全或资料大全,欢迎大家分享。

平行四边形

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

19.2 平行四边形(第一课时)

教学目标:

知识与技能:

1、理解并掌握平行四边形的定义;

2、掌握平行四边形的性质定理1及性质定理2; 3、理解两条平行线的距离的概念; 4、培养学生综合运用知识的能力

过程与方法:经历探索平行四边形的有关概念和性质的过程,发展学生的探究意识和合情推理

的能力。

情感态度与价值观:培养学生严谨的思维和勇于探索的思想意识,体会几何知识的内涵与实际

应用价值。

重点、难点:

重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 难点:运用平行四边形的性质进行有关的论证和计算.

教具准备:图片、三角板 课时安排:一课时 教学过程:

一、导入新课

引入:

等,都是平行四边形,平行四边形有哪些性质呢?

什么是平行四边形? 平行四边形的定义:

(1)定义: 两组对边分别平行的四边形叫做平行四边形。

在四边形中,最常见、价值最大的是平行四边形,如竹篱笆格子、推拉门、汽车防护链、书本

(2)几何语言表述 ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形

(3)定义的双重性 具备“两组对边分别平行”的四边形,才是“平行四边形”,反过来,“平行四边形”就一定具有“两组对边分别平行”

平行四边形与特殊的平行四边形练习题勿删

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

平行四边形与特殊的平行四边形练习题

一、选择题

1.下列命题中,正确的是( )

A.平行四边形的对角线相等 B.矩形的对角线互相垂直 C.菱形的对角线互相垂直且平分 D.梯形的对角线相等

2.下列说法中,正确的是( ) A . 同位角相等

C . 四条边相等的四边形是菱形

∠1=∠2 A.

4.在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是( ) 9 A. 24 A.

B. 16

C. 4

D. 2

第3题

这个四边形是平行四边形的是

A.AB//DC,AD//BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB//DC,AD=BC

10.如图2,点E是平行四边形ABCD的边CD的中点,AD、BE的延长线相交于点F,

DF=3,DE=2,则平行四边形ABCD的周长为

A. 5 B. 7 C.10

D. 14

B. 对角线相等的四边形是平行四边形 D. 矩形的对角线一定互相垂直

3.如图,在平行四边形ABCD中,下列结论中错误的是( )

B. ∠BAD=∠BCD

C. AB=CD

平行四边形性质导学案

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

主备: 校审: 签审: 使用时间:

《平行四边形性质》导学案 【学习目标】:知识目标要求

理解平行四边形的有关概念;探索并掌握平行四边形的对边相等,对角相等等性质.

能力训练要求

1. 动手操作实践的过程中,探索发现平行四边形的性质.

2. 知道解决平行四边形问题的基本思想是化为三角形问题来解决,渗透转化思想.

3. 通过探索平行四边形的性质,培养学生简单的推理能力和逻辑思维能力. 情感与价值观要求

1. 探索平行四边形性质的过程中,感受几何图形中呈现的数学美.

2. 在进行探索的活动过程中发展学生的探究意识,养成合作交流的学习习惯. 【重点难点】:探索平行四边形的性质. 平行四边形性质的理解与应用. 【学习过程】: 【基础知识】

1.平行四边形的定义: 做平行四

边形

A D 2.平行四边形的性质:

O 在□ABCD中,AC与BD相交于O点. 则:

①平行线有:AB∥

平行四边形复习讲义

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

中学1对1课外辅导专家

学科培训师辅导讲义

学员编号 学员姓名 课 题 备课时间 教学目标 重点、难点 年 级 辅导科目 七年级 数学 课时数 学科培训师 2 周老师 平行四边形复习讲义 2016年04月 14日 授课时间 2016年04月15日 掌握平行四边形、矩形、菱形、正方形等概念,掌握平行四边形、矩形、菱形、正方形的性质和判定,通过定理的证明和应用的教学,使学生逐步学会分别从题设和结论出发,寻找论证思路分析法和综合法。 1.平行四边形、矩形、菱形、正方形性质及判定的应用 2.相关知识的综合应用 特殊平行四边形即矩形、菱形、正方形,它们是历年中考的必考内容之 一,主要出现的题型多样,注重考查学生的基础证明和计算能力,以及考点及考试要求 灵活运用数学思想方法解决问题的能力。内容主要包括:矩形、菱形、 正方形的性质与判定,以及相关计算,了解平行四边形与矩形、菱形、正方形之间的联系,掌握平行四边形是矩形、菱形、正方形的条件。 教学内容 (1) 演变关系: (2) 从属关系: 1

成功不是凭梦想和希望,而是凭努力和实践

平行四边形教学方案

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

平行四边形(一)

【教学内容】

  教科书第70页例1、例2、练习十九1,3,4。

【教学目标】

1.联系生活实际,通过观察、操作等活动,认识平行四边形及其特征。

2.经历自主探索平行四边形特征的过程,培养学生动手操作、合作交流的能力,进一步发展空间观念。

3.在观察、操作、交流等数学活动中,让学生进一步体会几何图形的学习方法,积累认识图形的学习经验,感受数学思考的条理性。

4.应用平行四边形的特征解决简单实际问题,体会平面图形的学习价值,提高学生的学习兴趣。

5.了解平行四边形在生活中的应用。

【教学重、难点】

教学重点:认识平行四边形及其特征。

教学难点:自己探索、发现、描述、应用平行四边形的特征。

【教学准备】

教具:课件,长方形、三角形活动框,磁性小棒。

学具:三角板,量角器,直尺,平行四边形

纸片(4人小组相同),小棒4根(两两等长)。

【教学过程】

一、    导入新课

 

1.     目标导学。

(1)           什么是平行四边形?

(2) 平行四边形

19.1.1 平行四边形的性质(2)

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

www.czsx.com.cn

19.1.1 平行四边形的性质(2)

(第2课时)

三维目标 一、知识与技能

1.能正确说出平行四边形的对角线互相平分的性质;?知道平行四边形面积的计算方法.

2.会用平行四边形的对角线互相平分的性质,进行有关的论证和计算. 二、过程与方法

1.经历探究平行四边形的性质,在此活动中发展学生的合作、创新意识.

2.探索并掌握平行四边形对角线互相平分的性质;?掌握平行线之间的距离处处相等的结论并会简单的应用. 三、情感态度与价值观

1.在探究活动中,引导学生学会独立思考、自主探索、?合作交流的科学探究方法. 2.解决平行四边形问题的基本思路是化四边形为三角形来处理,?渗透转化的思想. 教学重点

1.平行四边形的对角线互相平分. 2.平行线之间的距离处处相等. 教学难点

灵活应用平行四边形的性质. 教具准备 多媒体课件. 教学过程

一、创设问题情境,引入新课

老师先画一平行四边形ABCD,请学生说出关性质.

生:AB∥CD,AD∥BC(定义),

- 1 -

平行四边形的性质教学设计

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

《平行四边形的性质》教学设计

教学目标:

1. 在联系生活实际和动手操作的过程中能够识别平行四边形,知道平行四边形容易变形的特性和对边相等的基本特征。

2.根据平行四边形的基本特征会在点子图上画平行四边形。

3.感受图形与生活的联系,使学生体会平行四边形在生活中的应用,培养数学应用意识,增强对“图形与几何”的学习兴趣。

教学重、难点:

使学生知道平行四边形对边相等、容易变形的特征。 教具准备:

多媒体课件,各种图形、卡片。

教学过程:

一、创设情境

1.初步感知,形成表象。

教师手拿可变形的长方形框架

回顾旧知:长方形边和角有什么特征?

师推拉长方形框让学生直观感受长方形框变成平行四边形

框的过程。

揭示课题:像这样的图形是平行四边形。

师:这节课老师将和同学们一起来认识平行四边形的性质。(板书课题)

二、建立表象

1.动手操作,感悟特征。

学生动手推拉长方形框。

生动手操作,师巡视,给学生充分“玩”的时间。

思考:拉长方形的一组对角,长方形的边和角有什么变化?

2.交流汇报,描述特征。

师:仔细观察这个平行四边形,说一说,它有哪些特征? 思考:用什么办法知道平行四边形的对边相等?

师:老师也想和同学们再玩一玩这个平行四边形,我们边玩边说(推拉过程)这样叫容易变形,对边相等,这条边的对边是

平行四边形 较难 题库

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

勾股定理 ?难度一般2 题库

1.如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为( ).

5533A.2 B.210 C.10 10 D.5 10

2.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,则第n个正方形的边长为( )

nn﹣1A.n B.(n﹣1)2 C.(2) D.(2)

3.如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝

22

隙).若①②③④四个平行四边形面积的和为14cm,四边形ABCD面积是11cm,则①②③④四个平行四边形周长的总和为( )

A.48cm B.36cm C.24cm D.18cm

4.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是( )

A. B.2 C.3 D.

5.如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点

试卷第1页,总25页

C与点O重合,折痕MN恰好

平行四边形中考集锦

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

中考集锦

20.(2013福建龙岩,20,10分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的

两点,∠1=∠2.

(1)求证:AE=CF;

(2)求证:四边形EBFD是平行四边形.

【答案】(1)证明:

(法一)如图①:∵四边形ABCD是平行四边形,

∴AD=BC,AD // BC,∠3=∠4,

∵∠1=∠3+∠5,∠2=∠4+∠6,

∠1=∠2,

∴∠5=∠6,

∴△ADE ≌△CBF,

∴AE =CF;

图① 图②

(法二)如图②,连接BD交AC于点O,

在平行四边形ABCD中,

OA=OC,OB=OD,

∵∠1=∠2,∠7=∠8,

∴△BOF ≌△DOE,

∴OE=OF,

∴OA-OE =OC-OF,

即:AE=CF.

(2)证明:

(法一)如图①,

∵∠1=∠2,

∴DE // BF,

∵△ADE ≌△CBF,

∴DE=BF,

∴四边形EBFD是平行四边形.

(法二)如图②

∵OE=OF,OB=OD,

∴四边形EBFD是平行四边形.

15.(2013福建泉州,15,4分)如图,顺次连结四边形 ABCD 四边的中点 E、F、G、H,则四边形 EFGH 的形状一定是 .

【答案】 平行四边形

16.(2013福建泉州,16,4分) 如图,菱形ABCD

的周长为

《平行四边形》教学设计

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

《平行四边形及性质》

教学设计

博罗县罗浮中学 陈万意

《平行四边形及性质》教学设计

【教材】人教版义务教育课程标准实验教科书八年级下册19.1平行四边形的性质 【课时安排】共2课时 这是第1课时 【教学对象】八年级学生 【授课教师】陈万意 【教材分析】

四边形是现实生活中的常见图形,是平面几何中最基本的平面图形之一。本章的学习,既是前面所学的平行线、相交线,全等三角形,图形的平移、旋转、轴对称等知识的回顾与延伸,又是后续学习特殊的平行四边形、梯形、相似形等知识的基础 【学情分析】

首先,学生在小学四年级(下)的数学学习中,学生已经认识了平行四边形,知道了平行四边形的定义及面积公式,会用三角板等画平行四边形。在七年级和八年级上册的学习中,已为本章的学习做了铺垫,系统学习了平行线和相交线的有关几何知识,还学习了全等三角形的性质和判别方法、图形的平移、旋转、轴对称等知识。并在学习中积累了必要的探究活动、合作交流的经验。对几何图形的认识、图形的变换有了初步的认识,对转化思想也有一定的体验,为探究并掌握平行四边形的性质做了知识和经验准备。

同时,八年级的学生已经具备简单的几何推理能力,认知发展处于从合情推理阶段到演绎推理阶段的过渡,数学