角平分线平行线等腰三角形

“角平分线平行线等腰三角形”相关的资料有哪些?“角平分线平行线等腰三角形”相关的范文有哪些?怎么写?下面是小编为您精心整理的“角平分线平行线等腰三角形”相关范文大全或资料大全,欢迎大家分享。

角平分线、平行线、等腰三角形“知识板块”的应用

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

1.角平分线遇平行线出现等腰三角形。分a、b两种情形: a、 如图甲:一直线与角的一边平行 //OA??3??2?CD???1??3?DO?DC ?1??2? 等腰三角形DOCb、 如图乙:一直线与角的平分线平行

?? DE//OC???

2.等腰三角形与角平分线往往出现平行线 a、如图甲:等腰三角形的一腰与角的一边平行

CO?DC??1??3? ???2??3?CD//OA?1??2?

b、如图乙:等腰三角形的底边与顶角的外角平分线平行

?1??3????2??4???3??4?OD?OE??等腰三角形ODE??1??2?图甲

B

O 3 D

图乙 1 2 4 E

A

C

?OE??3??4?OD1???3??AOB???2?AOB??3??4? ? ??1??3?OC//DE1 ??1??AOB?2 ?3.等腰三角形与平行线往往出现角平分线

a、如图甲:与一腰平行 OA//DC??3??2????1??2 CO?DC??3??1?b、如图乙:与底边平行 OD?OE??3??4? ? ? 1 ? ? 3 ? ? 1 ??2??DE//OC?

角平分线与等腰三角形

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

难舍难分的角平分线与等腰三角形

角平分线与等腰三角形有着密不可分的联系。在许多几何问题中,遇到等腰三角形就会想到顶角的平分线,遇到角平分线又会想到构造等腰三角形。下面归类说明。

一、 角平分线+平行线→等腰三角形

当一个三角形中出现角平分线和平行线时,我们就可以寻找到等腰三角形。如图1(1)中,若AD平分,AD//EC,则是等腰三角形;如图1(2)中,若AD平分,DE//AC,则是等腰三角形;如图1(3)中,若AD平分,CE//AB,则是等腰三角形;如图1(4)中,若AD平分,EF//AD,则是等腰三角形。

图1

例1. 如图2,在中,AB=AC,在AC上取点P,过点P作线于点E,垂足为点F。求证:AE=AP

,交BA的延长

图2

简析:要证AE=AP,可寻找一条角平分线与EF平行,于是想到AB=AC,则可以作AD平分,此时。而,故AD//EF。故可知是等腰三角形。故AE=AP。

例2. 如图3,在中,、的平分线相交于点O,过点O作DE//AC,分别交AB、BC于点D、E。试猜想线段AD、CE、DE的数量关系,并说明你的理由。

图3

简析:猜想:AD+CE=DE。理由如下:由于OA、OC分别是DE//AC,所以

训练题:如图4,在

中,AD平

角平分线与等腰三角形

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

难舍难分的角平分线与等腰三角形

角平分线与等腰三角形有着密不可分的联系。在许多几何问题中,遇到等腰三角形就会想到顶角的平分线,遇到角平分线又会想到构造等腰三角形。下面归类说明。

一、 角平分线+平行线→等腰三角形

当一个三角形中出现角平分线和平行线时,我们就可以寻找到等腰三角形。如图1(1)中,若AD平分,AD//EC,则是等腰三角形;如图1(2)中,若AD平分,DE//AC,则是等腰三角形;如图1(3)中,若AD平分,CE//AB,则是等腰三角形;如图1(4)中,若AD平分,EF//AD,则是等腰三角形。

图1

例1. 如图2,在中,AB=AC,在AC上取点P,过点P作线于点E,垂足为点F。求证:AE=AP

,交BA的延长

图2

简析:要证AE=AP,可寻找一条角平分线与EF平行,于是想到AB=AC,则可以作AD平分,此时。而,故AD//EF。故可知是等腰三角形。故AE=AP。

例2. 如图3,在中,、的平分线相交于点O,过点O作DE//AC,分别交AB、BC于点D、E。试猜想线段AD、CE、DE的数量关系,并说明你的理由。

图3

简析:猜想:AD+CE=DE。理由如下:由于OA、OC分别是DE//AC,所以

训练题:如图4,在

中,AD平

等腰三角形说课稿

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

等腰三角形说课稿

各位评委老师大家好,我是来应聘初中数学的X号考生。我今天抽到的题目是等腰三角形________(板书),我将主要从说教材,说学情,说学法、教法,说教学过程和说板书设计五个部分对本堂课的教学进行说明。 一 说教材

(一)教材的地位与作用

本节教材是人教版初中数学 ____八年级 上册第___十二章第___一节第一课时的内容,是初中数学的重要内容之一。主要学习等腰三角形等边对等角和等腰三角形的三线合一两个性质一方面,这是学生在学习了____轴对称性以及学习了全等三角形的判定的基础上对_三角形知识___的进一步深入和拓展;另一方面,又为学习_等边三角形和证明角相等,线段相等及两直线互相垂直___ 等知识奠定了基础,是进一步研究三角形____的工具性内容。因此本节课在教材中具有承上启下的作用。 (二)教学目标

根据对教材地位与作用的分析。在新课程改革理念的指导下,我制定了如下的三维教学目标:

1.知识与技能:理解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断和计算 2过程与方法

培养学生自主探索学习、协作学习以及分析

等腰三角形讲义1

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

讲义

等腰三角形

撰稿:徐长明 审稿:张扬 责编:孙景艳

一、 目标认知 学习目标:

通过观察发现等腰三角形的性质;掌握等腰三角形的识别方法,会用等腰三角形的性质进行简单的计算和证明;理解等腰三角形与等边三角形的相互关系;能够利用等腰三角形的识别方法判断等腰三角形;掌握等边三角形的特征和识别方法;掌握一般文字命题的解题方法

重点:

等腰三角形的性质与判定。

难点:

比较复杂图形、题目的推理证明

二、 知识要点梳理

知识点一:等腰三角形、腰、底边

有两边相等的三角形叫等腰三角形,其中相等的两条边叫腰,第三条边叫底边,两腰的夹角叫顶角,底边和腰的夹角叫底角

如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.

知识点二:等腰三角形的性质

1、性质1:等腰三角形的两个底角相等(简称“等边对等角”).

性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).

2、这两个性质证明如下:

在△ABC中,AB=AC,如图所示.

讲义

作底边BC的高AD,则有

∴ Rt△ABD≌Rt△ACD.

∴ ∠B=∠C,∠1=∠2.BD=CD. 于是性质1、性质2均得证. 3、说明:

(1)①等

三角形、等腰三角形以及全等三角形的证明

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

儒洋教育学科教师辅导讲义

学员姓名: 年 级: 课时数: 辅导科目: 学科教师: 课 题 授课时间: 教学目标 重点、难点 考点及考试要求 教学内容 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段:

(1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质

(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180°

(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。

4. 补充性质:在?ABC中,D是BC边上任意一点,E是AD上任意一点,则三角形、等腰三角形以及全等三角形的证明 备课时间: S?ABE?S?CDE?S

中考数学考点复习,成比例线段,线段、角、相交线与平行线,三角形基础知识,等腰三角形

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

教学 年级 八年级 教学时间 课型 第7 周第 5 课时 主二次备 宋沿潮 备课教教师 师 课 题 §9.1成比例线段 练习 教学 目标 2、能利用比例的基本性质解决问题; 1、理解、掌握比例的基本性质、合比性质及其等比性质。 3、发展分析问题,解决问题的能力,培养探究意识。 教 学 教学重点:比例线段、比例的性质 重 点 难 点 教学难点:比例性质的理解、掌握与应用 教学 课件 资源 教法与学法简述 自主探究、合作交流。 通案内容设计 个案内容设计 一、目标定向: 1、两条线段的比。 教 学 内 容 2、成比例的线段、比例线段 3、比例a?c(或a∶b=c∶d)中, a,b,c,dbd叫做比例的项,a、d叫做比例的外项,c、b叫做比例的内项. d叫做第四比例项。当比例的两个内项相等时,即?(或a∶b=b∶c),b叫做a和c的比例中项。 4、如果a?c,那么a?b?c?d bdbd abbca?bc?d?成立. bd5.等比性质:如果acm????(b?d???n?0)那么bdna?c???ma? b?d???nb二、自学尝试 针对上述学习目标,展开自学, 学生根据学案内容认真进行自学,自行解决学案设置的内容,严禁

等腰三角形的判定

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

篇一:等腰三角形的性质定理和判定定理

一. 本周教学内容:

等腰三角形的性质和判定

二. 教学目标:

(一)知识与技能:

(1)掌握等腰三角形的性质定理和判定定理,并会灵活运用。

(2)能用上述结论进行分析与说理,进行初步的逻辑思维训练,形成一定的推理能力。

(二)情感态度与价值观:

通过等腰三角形性质定理和判定定理的证明体现数学的应用价值。

三. 重点、难点:

重点是等腰三角形的性质定理和判定定理

难点是利用定理解决实际问题

四. 教学过程:

(一)知识梳理

知识点1:等腰三角形的性质定理1

(1)文字语言:等腰三角形的两个底角相等(简称“等边对等角”)

(2)符号语言:如图,在△ABC中,因为AB=AC,所以∠B=∠

C

(3)证明:取BC的中点D,连接AD

在△ABD和△ACD中

∴△ABD≌△ACD(SSS)

∴∠B=∠C(全等三角形对应角相等)

(4)定理的作用:证明同一个三角形中的两个角相等。

知识点2:等腰三角形性质定理2

(1)文字语言:等腰三角形的顶角平分线,底边上的中线,底边上的高,互相重合(简称“三线合一”)

(2)符号语言:

∵AB=AC∵AB=AC ∵AB=AC

∠1=∠2 AD⊥BC BD=DC

∴AD⊥BC,BD=DC ∴∠1=∠2 ∴∠1=∠2

BD=DC AD

分类汇编:等腰三角形 - 图文

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

2013中考全国100份试卷分类汇编

等腰三角形

1、(2013?新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) 12 15 18 A.B. C. 12或15 D. 考点: 等腰三角形的性质;三角形三边关系. 分析: 因为已知长度为3和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论. 解答: 解:①当3为底时,其它两边都为6, 3、6、6可以构成三角形, 周长为15; ②当3为腰时, 其它两边为3和6, ∵3+3=6=6, ∴不能构成三角形,故舍去, ∴答案只有15. 故选B. 点评: 本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键. 2、(2013年临沂)如图,在平面直角坐标系中,点A1 , A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1A2B1B2其中的任意两点与点为顶..O.点作三角形,所作三角形是等腰三角形的概率是

2 3 1 1

(A) . (B) . (C

等腰三角形性质:三线合一”专题

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

等腰三角形性质:三线合一”专题

等腰三角形有一个重要的性质:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。这就是著名的等腰三角形“三线台一”性质。“三线合一”性质常用来证明两线垂直、两线段相等和两角相等。反之,如果三角形一边上的中线、这边上的高、这边所对角的角平分线中有两条重合,那么这个三角形就是等腰三角形。 【例题讲解】

例1. 如图所示,在等腰△ABC中,AD是BC边上的中线,点E在AD上。

求证:BE=CE。

变式练习1-1 如图,在△ABC中,AB=AC,D是形外一点,且分BC。

变式练习1-2 已知,如图所示,AD是△ABC,DE、DF分高。求证:AD垂直平分EF。

例二:如图△ABC中,AB=AC,∠A=36°,BD平分∠ABC,DE⊥AB于BDC周长为24,求AE的长度。

BD=CD。求证:AD垂直平

别是△ABD和△ACD的

E,若CD=4,且△

D

C

例三. 等腰三角形顶角为 ,一腰上的高与底边所夹的角是 ,则 与 的关系式为 =___________。

图1

分析:如图1,AB=AC,BD⊥AC于D,作底边BC上的高AE,E为垂足,则可知∠EAC=∠EAB

1

,又∠2

EAC 90° ∠C,∠ 90°