排列组合的21种经典题型及解法小学
“排列组合的21种经典题型及解法小学”相关的资料有哪些?“排列组合的21种经典题型及解法小学”相关的范文有哪些?怎么写?下面是小编为您精心整理的“排列组合的21种经典题型及解法小学”相关范文大全或资料大全,欢迎大家分享。
排列组合问题经典题型
排列组合问题经典题型与通用方法
1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.
例1.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,则不同的排法有( )
A、60种 B、48种 C、36种 D、24种
2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.
例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )
A、1440种 B、3600种 C、4820种 D、4800种
1(,ij1,2?,3,4)例3.已知集合A?{1,2,3,?,19,20},集合B?{a1,a2,a3,a4},且B?A,若|ai?aj|?则满足条件的集合B有多少个?
3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.
,
例4.(1)A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻)那么不同的排法有( )
A、24种 B、60种 C、90种 D、120种
(2)由数字0,1,2,3,4,
排列组合二十种经典解法!
1
超全的排列组合解法
排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标
1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力
3.学会应用数学思想和方法解决排列组合问题. 复习巩固
1.分类计数原理(加法原理)
完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有:
N?m1?m2??mn 种不同的方法.
2.分步计数原理(乘法原理)
完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有:
N?m1?m2??mn 种不同的方法.
3.分类计数原理分步计数原理区别
分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事
排列组合二十种经典解法!
1
超全的排列组合解法
排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标
1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力
3.学会应用数学思想和方法解决排列组合问题. 复习巩固
1.分类计数原理(加法原理)
完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有:
N?m1?m2??mn 种不同的方法.
2.分步计数原理(乘法原理)
完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有:
N?m1?m2??mn 种不同的方法.
3.分类计数原理分步计数原理区别
分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事
排列组合的常见题型及其解法(优质资料,免费下载)
排列组合的常见题型及其解法
李锋
排列、组合的概念具有广泛的实际意义,解决排列、组合问题,关键要搞清楚是否与元素的顺序有关。复杂的排列、组合问题往往是对元素或位置进行限制,因此掌握一些基本的排列、组合问题的类型与解法对学好这部分知识很重要。
一. 特殊元素(位置)用优先法
把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。 例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?
分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。
1 解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有A4种站法;515第二步再让其余的5人站在其他5个位置上,有A5种站法,故站法共有:A4=480(种) ?A52 解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有A5种;424第二步再让剩余的4个人(含甲)站在中间4个位置,有A4种,故站法共有:A5?A4?480(种)
二. 相邻问题用捆绑法
对于要求某几个元素必须排在一起的问题,可用“
解排列组合应用题的21种策略
解排列组合应用题的21种策略
排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.
1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.
例1.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法种数有
A、60种 B、48种 C、36种 D、24种
2.不相邻问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.
例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A、1440种 B、3600种 C、4820种 D、4800种
3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.
例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻)那么不同的排法种数是
A、24种 B、60种 C、90种 D、120
解排列组合应用题的21种策略
解排列组合应用题的21种策略
排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.
1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法种数有( )
A、60种 B、48种 C、36种 D、24种
4解析:把A,B视为一人,且B固定在A的右边,则本题相当于4人的全排列,A4?24种,
答案:D.
2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.
例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )
A、1440种 B、3600种 C、4820种 D、4800种
52解析:除甲乙外,其余5个排列数为A5种,再用甲乙去插6个空位有A6种,不同的排法种52数是A5A6?3600种,选B.
3.定序问题缩倍法:
排列组合问题解法总结
排列组合问题
二十种排列组合问题的解法
排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理. 教学目标
1.进一步理解和应用分步计数原理和分类计数原理.
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题.提高学生解决问题分析问题的能力
3.学会应用数学思想和方法解决排列组合问题. 复习巩固
1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有:N m1 m2 mn种不同的方法. 2.分步计数原理(乘法原理)
完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有:N m1 m2 mn种不同的方法.
3.分类计数原理分步计数原理区别
分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事.
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问
排列组合问题题型方法总结
排列组合常用方法题型总结
【知识内容】
1.基本计数原理
⑴加法原理
分类计数原理:做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种方法,……,在第n类办法中有mn种不同的方法.那么完成这件事共有N?m1?m2??mn种不同的方法.又称加法原理.
⑵乘法原理
分步计数原理:做一件事,完成它需要分成n个子步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同方法,……,做第n个步骤有mn种不同的方法.那么完成这件事共有N?m1?m2??mn种不同的方法.又称乘法原理.
⑶加法原理与乘法原理的综合运用
如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类
计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.
分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用.
2. 排列与组合
⑴排列:一般地,从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的
5.6高考数学排列组合常见题型
选修2-3:排列组合常见题型
可重复的排列(求幂法) 重复排列问题要区分两类元素:一类可以重复,另一类不能重复。
在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数。
【例1】 (1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)3(2)4 (3)4
433相邻问题(捆绑法) 相邻的几个元素捆绑成一个组,当作一个大元素参与排列.高☆考♂资♀源
小学奥数专题--排列组合
? 排列问题题型分类:
1.信号问题 2.数字问题 3.坐法问题 4.照相问题 5.排队问题 ? 组合问题题型分类:
1.几何计数问题
2.加乘算式问题 3.比赛问题 4.选法问题 ? 常用解题方法和技巧 1. 优先排列法 2. 总体淘汰法
3. 合理分类和准确分步 4. 相邻问题用捆绑法 5. 不相邻问题用插空法 6. 顺序问题用“除法” 7. 分排问题用直接法 8. 试验法 9. 探索法 10. 消序法 11. 住店法 12. 对应法
13. 去头去尾法 14. 树形图法 15. 类推法
16. 几何计数法 17. 标数法 18. 对称法
分类相加,分步组合,有序排列,无序组合
? 基础知识(数学概率方面的基本原理)
一. 加法原理:做一件事情,完成它有N类办法,
在第一类办法中有M1中不同的方法, 在第二类办法中有M2中不同的方法,……, 在第N类办法中有Mn种不同的方法,
那么完成这件事情共有M1+M2+……+Mn种不同的方法。
二. 乘法原理:如果完成某项任务,可分为k个步骤,
完成第一步有