第一型曲线积分
“第一型曲线积分”相关的资料有哪些?“第一型曲线积分”相关的范文有哪些?怎么写?下面是小编为您精心整理的“第一型曲线积分”相关范文大全或资料大全,欢迎大家分享。
重积分、曲线积分、曲面积分
补充内容 一.二重积分
定义:设D为xy平面上的有界闭区域,f(x,y)为定义在D上的函数。用任意的曲线把D分成n个小区域?1,?2,??n. 以??i表示小区域的面积,这些小区域构成D的一个分割T, 以di表示小区域?i的直径,称T?maxdi为分割T的细度。在每个?i上任取一点
1?i?nn(?i,?i),作和式?f(?i,?i)??i,称它为函数f(x,y)在D上属于分割T的一个积分和。
i?1如果
n lim?f?(i?,i?)?i
T?0i?1存在,则称f(x,y)在D上可积,此极限值就称为f(x,y)在D上的积分,记为
??Df(x,y)d?,即
n
??Df(x,y)?d?T?0li?mi?1f?i(?i?,?)i。
定理:有界闭区域上的连续函数必可积。
性质:1. 若f(x,y)在区域D上可积,k为常数,则kf(x,y)在D上也可积,且
??Dkf(x,yd)??k??fx(y,d?)
D 2. 若f(x,y),g(x,y)在D上都可积,则f(x,y)?g(x,y)在D上也可积,且
??[fD(x,y
曲线积分与曲面积分
高等数学
六、选择题(共 10 小题,)
1、
2、
3、设OM是从O(0,0)到M(1,1)的直线段,则与曲线积分I x2 y2
OM
e
ds不
相等的积分是
(A)
1
x
e
2dx (B)
1
y
0e
22dy
(C)
2
erdr
(D)
1
r0
e2dr
答( ) 4、L为从A(0,0)到B(4,3)的直径,则 L
(x y)ds
(A) 4
0(x 3
4
x)dx (B)
4
30
(x
4x) 916
dx (C)
3
(
4
3
y y)dy
(D)
3
(
493y y) 16
dy
答:( )
5、C为y x2上从点(0,0)到(1,1)的一段弧。则I
L
yds ______________。(A)
1
0 4x2dx (B)
1
y ydy (C)
1
x 4x2dx
(D)
1
1
y
y
dy
答:( )
6、
7、设L为下半圆周 . 将曲线积分 化为定积分的正确结果是
8、设L是圆周 x2+y2=a2 (a>0)负向一周,则曲线积分
答 ( )
2xdx ydy
9、设L是 |y|=1-x2表示的围线的正向,则 22L2x y
(A) 0. (C) 2 . (B) 2π. (D) 4ln2.
答 ( )
10、若是某二元函数的全微分,则a,
曲线积分曲面积分总结
第十三章 曲线积分与曲面积分
定积分和重积分是讨论定义在直线段、平面图形或者空间区域上函数的积分问题.但在实际问题中,这些还不够用,例如当我们研究受力质点作曲线运动时所作的功以及通过某曲面流体的流量等问题时,还要用到积分区域是平面上或空间中的一条曲线,或者空间中的一张曲面的积分,这就是这一章要讲的曲线积分和曲面积分.
第一节 对弧长的曲线积分
一、 对弧长的曲线积分的概念与性质
在设计曲线构件时,常常要计算他们的质量,如果构件的线密度为常量,那么这构件的质量就等于它的线密度与长度的乘积. 由于构件上各点处的粗细程度设计得不完全一样, 因此, 可以认为这构件的线密度(单位长度的质量)是变量, 这样构件的质量就不能直接按下面它的线密度与长度的乘积来计算. 下面考虑如何计算这构件的质量. 设想构件为一条曲线状的物体在平面上的曲线方程为y?f?x?,x??a,b?,其上每一点的密度为??x,y?.
如图13-1我们可以将物体分为n段,分点为
M1,M2,...,Mn, 每一小弧段的长度分别是?s1,?s2,...,?sn.取其中的一小段弧Mi?1Mi来分
图13-1
析.在线密度连续变化的情况下, 只要这一小段足够小,就可以用这一小段上的任意一点
??i
曲线积分与曲面积分
第十章 曲线积分与曲面积分参考答案
第十章 曲线积分与曲面积分答案
一、选择题 1.曲线积分
?x??f(x)?e?sinydx?f(x)cosydy与路径无关,其中f(x)有一阶连续偏导?L数,且f(0)?0,则f(x)? B
A.
1(e?x?ex) B. 1(ex?e?x) C. 1(ex222?e?x) D.0 2.闭曲线C为x?y?1的正向,则
C??ydx?xdyx?y? C
A.0 B.2 C.4 D.6 3.闭曲线C为4x2?y2?1的正向,则
?ydx?xdy2C?4x2?y? D
A.?2? B. 2? C.0 D. ?
4.?为YOZ平面上y2?z2?1,则
??(x2?y2?z2)ds? D
?A.0 B.
? C. 1? D. 142?
5.设C:x2?y2?a2,则?(x2?y2)ds? C
CA.2?a2 B. ?a2 C. 2?a3 D. 4?a3 6. 设?为球面x2?y2?z2?1
曲线积分习题课
曲线积分习题课
?x?2cos3t?1、 求?lxds,其中l是星形线?经A(2,0),C(0,2),B(?2,0)的?ACB3??y?2sint弧段。
2、 设一金属线成半圆形x?acost,y?asint(0?t??),其上每一点密
度等于该点的纵坐标,求此金属线的质量。
3、 设l是由原点O沿抛物线y?x2到点A(1,1),再由点A沿直线y?x到原点的封闭曲线。求??larctandy?dx。 4、 计算
x2?1y2xarctandx?arctandy??lxxyyyx,其中l为由曲线所围成区域的边界正向。 ?y3(x?y0)y21?,x2?y24?,y?,x3y3y2(xy?e)dx?(xy?xe?y)dy,其中l是对称于两坐标轴的任5、 求??l意封闭曲线。
6、 计算?c(y?2xy)dx?(x2?2x?2y2)dy,其中c是由点A(4,0)到点O(0,0)的上半圆周y?4x?x2。 7、 计算??ldx?dy,l为x?y?1的逆时针方向。 x?yx2y2x?yx?y8、 计算??lx2?y2dx?x2?y2dy,其中l为沿椭圆a2?b2?1的正方向。
9、 计算?c?yx2A(?1,0)dx?dy,其中为自点沿y?x?1到点c22
曲线积分的计算法
曲线积分的计算法
1. 基本方法 曲线积分 第一类 ( 对弧长 )
第二类 ( 对坐标 )
用参数方程
(1) 选择积分变量 用直角坐标方程
用极坐标方程
???转化
定积分
(2) 确定积分上下限 定理
设f(x,y)在曲线弧L的参数方程为?x??(t),??y??(t),?第一类: 下小上大 第二类: 下始上终
对弧长曲线积分的计算
L上有定义且连续(??t??)其中,且,?(t),?(t)在[?,?]上具有一阶连续导数?Lf(x,y)ds???22f[?(t),?(t)]??(t)???(t)dt(???)注意:
1.定积分的下限?一定要小于上限?;.2.f(x,y)中x,y不彼此独立,而是相互有关的特殊情形
(1)L:y??(x)a?x?b.b2f[x,?(x)]1???(x)dx.?Lf(x,y)ds???a(2)L:x??(y)c?y?d.d?Lf(x,y)ds?cf[?(y),y]1???(y)dy.2
例1
解
求I???L?x?acost,xyds,L:椭圆?(第?象限).?y?bsint,22I??20acost?bsint(?asint)?(bcost)dt??ab?2sintcostasint?bcostdt
J型增长曲线和S型增长曲线
种群数量增长的两种曲线模型总结
——J型增长曲线模型和S型增长曲线模型1.两种曲线模型比较
项目“J”型曲线“S”型曲线
增长模型
前提条件
理想状态:资源无限、空间无限、不受
其他生物制约(无种内斗争,缺少天敌)现实状态:资源有限、空间有限、受其他生物制约(种内斗争加剧,捕食者数量增加)
种群增长
速率
种群增长
率
K值有无无K值有K值
曲线形
成原因
无种内斗争,缺少天敌种内斗争加剧,天敌数量增多
联
系
两种增长曲线的差异主要是因环境阻力大小不同,对种群增长的影响不同
值与K2在实践中的应用
灭鼠捕鱼
K2(最大增长速率)灭鼠后,鼠的种群数量在K2附
近,这时鼠的种群数量会迅速
增加,无法达到灭鼠效果
使鱼的种群数量维持在K2,捕
捞后,鱼的种群数量会迅速回
升
K值(环境容纳量)
改变环境,降低K值,使之不
适合鼠生存保证鱼生存的环境条件,尽量
提升K值
例1:右图中种群在理想环境中呈“J”型曲线增长(如图中甲);在有环境阻力的条件下呈“S”型曲线增长(如图中乙)。下列有关种群增长曲线的叙述,正确的是( )
A、环境阻力对种群增长的影响出现在d点之后
B、若此图表示蝗虫种群增长曲线,防治害虫应从c点开始
C、一个物种引入新的地区后,开始一定呈“J”型增长
D、若此图表示草履虫增长曲线,当种群数量达到
曲线积分与曲面积分题库(学生用)
曲线积分与曲面积分
一选择题
1. xds=( ),L为抛物线y?x2上0?x?1的弧段。
?L(A)
111(55?1) (B)(55?1) (C) (D)(55?1)
128122.设L是抛物线y?x2(?1?x?1),x增加的方向为正向,则 (A)0,?Lxds和?xdy?ydx?[ ]
L2525 (B)0,0 (C), (D),0 383812xx223.设L为从A(1,)沿曲线2y?x到点B(2,2)的弧段,则曲线积分?dx?2dy=
Ly2y (A)?3 (B)
3 (C)3 (D)0 2x2y2?1,其周长为a,求?(3x2?4y2)ds= ; 4. 设L为椭圆?L435.设L为x2?y2?1上点(1,0)到(?1,0)的上半弧段,则6.L为逆时针方向的圆周:(x?2)2?(y?3)2?4,则7.设L是由点A(1,?1)到B(1,1)的线段,则8.计算下列对弧长的曲线积分 1)
? L2ds= ;
?ydx?xdy? ;
L?L(x2?2xy)dx?
曲线积分与曲面积分习题及答案
第十章 曲线积分与曲面积分
(A)
1.计算??x?y?dx,其中L为连接?1,0?及?0,1?两点的连直线段。
L2.计算?Lx2?y2ds,其中L为圆周x2?y2?ax。
3.计算??x2?y2?ds,其中L为曲线x?a?cost?tsint?,y?a?sint?tcost?,
L?0?t?2??。
4.计算?eLx2?y2ds,其中L为圆周x2?y2?a2,直线y?x及x轴在第一
角限内所围成的扇形的整个边界。
4?4????33??5.计算??x?y?ds,其中L为内摆线x?acos3t,y?asin3t?0?t??L2????在第一象限内的一段弧。
6.计算
?Lz2ds,其中L为螺线x?acots,y?asint,22x?yz?at?0?t?2??。
7.计算?xydx,其中L为抛物线y2?x上从点A?1,?1?到点B?1,1?的一段弧。
L8.计算?x3dx?3zy2dy?x2ydz,其中L是从点A?3,2,1?到点B?0,0,0?的直线
L段AB。
9.计算?xdx?ydy??x?y?1?dz,其中L是从点?1,1,1?到点?2,3,4?的一段直
L线。
10.计算??2a?y?dx??a?y?dy,其中L为摆线x?a?t?sint?
曲线积分与曲面积分习题及答案
第十章 曲线积分与曲面积分
(A)
1.计算??x?y?dx,其中L为连接?1,0?及?0,1?两点的连直线段。
L2.计算?Lx2?y2ds,其中L为圆周x2?y2?ax。
3.计算??x2?y2?ds,其中L为曲线x?a?cost?tsint?,y?a?sint?tcost?,
L?0?t?2??。
4.计算?eLx2?y2ds,其中L为圆周x2?y2?a2,直线y?x及x轴在第一
角限内所围成的扇形的整个边界。
4?4????33??5.计算??x?y?ds,其中L为内摆线x?acos3t,y?asin3t?0?t??L2????在第一象限内的一段弧。
6.计算
?Lz2ds,其中L为螺线x?acots,y?asint,22x?yz?at?0?t?2??。
7.计算?xydx,其中L为抛物线y2?x上从点A?1,?1?到点B?1,1?的一段弧。
L8.计算?x3dx?3zy2dy?x2ydz,其中L是从点A?3,2,1?到点B?0,0,0?的直线
L段AB。
9.计算?xdx?ydy??x?y?1?dz,其中L是从点?1,1,1?到点?2,3,4?的一段直
L线。
10.计算??2a?y?dx??a?y?dy,其中L为摆线x?a?t?sint?