量子力学教程第二版周世勋课后答案
“量子力学教程第二版周世勋课后答案”相关的资料有哪些?“量子力学教程第二版周世勋课后答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“量子力学教程第二版周世勋课后答案”相关范文大全或资料大全,欢迎大家分享。
《量子力学教程》周世勋_课后答案
1
量子力学课后习题详解
第一章 量子理论基础
1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即
m λ T=b (常量)
; 并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式
dv e
c
hv d kT
hv v v 1
1
83
3
-?=
πρ, (1) 以及 c v =λ, (2)
λρρd dv v v -=, (3)
有
,1
1
8)
()
(5
-?=
?=?
?? ??-=-=kT
hc
v
v
e
hc
c
d c d d dv λλ
λ
πλ
λρ
λ
λλρλρ
ρ
这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:
011511
86
'
=???
?
?
??
-?+--?=
-kT
hc kT
hc
e kT hc e
hc
λλλλλ
πρ
2
?
量子力学答案_周世勋
量子力学习题及解答
1
第一章 量子理论基础
1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即
m λ T=b (常量);
并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式
dv e
c
hv d kT
hv v v 1
1833
-?
=πρ, (1) 以及 c v =λ, (2)
λρρd dv v v -=, (3)
有
,1
18)()
(5-?=?=??
? ??-=-=kT
hc v v e
hc c
d c d d dv λλλ
πλλρλλλρλρ
ρ
这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:
011511
86'
=????
?
??
-?+--?=-kT
hc kT hc e
kT hc e hc λλλλλ
周世勋量子力学教案5
§5.1 非简并定态微扰理论
如何分?假设 把微扰
本征值及本征函数较容易解出或已有现成解, 是小量能看成微扰,在已知解的基础上,
的影响逐级考虑进去。
代入方程
同次幂相等
(
(1)
(2)
(3)
① 求能量的一级修正
(2)式左乘
并对整个空间积分
1
能量的一级修正 等于 在
态中的平均值。
②求对波函数一级修正
将
仍是方程 (2) 的解,选取 a 使展开式不含
将上时代入式 (2)
左乘上式,对整个空间积分
以
令
上式化简为:
2
③求能量二级修正
把 代入(3)式,
左乘方程(3)式,对整个空间积分
左边为零
讨论:(1)微扰论成立的条件:
(a) 可分成 ,
是问题主要部分,精确解已知或易求
(b)
(2)可以证明
<<1
例:一电荷为e的线性谐振子受恒定弱电场
作用,电场沿x正方向,用微扰法求体系的定态能量和波函数。
【解】
3
是 的偶函数
周世勋量子力学习题及解答
word 版本.
量子力学习题及解答
第一章 量子理论基础
1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即
m λ T=b (常量);
并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式
dv e c
hv d kT
hv v v 1
1
833
-?
=πρ, (1)
以及 c v =λ, (2)
λρρd dv v v -=, (3)
有
,1
18)()
(5-?=?=??
? ??-=-=kT
hc v v e
hc c
d c d d dv λλλ
πλλρλλλρλρ
ρ
这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:
011511
86
'=???
?
?
??
-?+--?=
-kT hc kT
hc
e kT hc e
hc
周世勋量子力学习题及解答
1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长?m与温度T成反比,即
; ?m T=b(常量)
并近似计算b的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式
8?hv3?vdv?3?c1ehvkTdv, ?1 (1)
?v?c,
以及
(2)
?vdv???vd?, (3)
有
dvd??c?d????????v(?)d??(?)?v?c?????
?8?hc?5??1ehc?kT,?1这里的??的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。
本题关注的是λ取何值时,??取得极大值,因此,就得要求?? 对λ的一阶导数为零,由此可求得相应的λ的值,记作?m。但要注意的是,还需要验证??对λ的二阶导数在?m处的取值是否小于零,如果小于零,那么前面求得的?m就是要求的,具体如下:
??hc1??'???6?hc?5???0 hc????kT???e?kT?1?1?e?kT? ?5?hc?1hc?0
??kT1?e?kT8?hc1? ?
5(1?e?
量子力学教程高等教育出版社周世勋课后答案详解
量子力学课后习题详解
第一章 量子理论基础
1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长 m与温度T成反比,即
; m T=b(常量)
并近似计算b的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式
8 hv3
vdv 3
c
1e
hvkT
dv, (1) 1
以及 v c, (2)
vdv vd , (3)
有
dvd
c d
v( )
d
v( ) c
8 hc 5
1e
hckT
, 1
这里的 的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。
本题关注的是λ取何值时, 取得极大值,因此,就得要求 对λ的一阶导数为零,由此可求得相应的λ的值,记作 m。但要注意的是,还需要验证 对λ的二阶导数在 m处的取值是否小于零,如果小于零,那么前面求得的 m就是要求的,具体如下:
'
8 hc
6
e
1
hc kT
hc1 5 hc kT 1 1 e kT
0
5
hc
kT
11 e
hc k
量子力学课后答案
? ? ? ? ? ? ? 第一章 绪论
第二章 波函数和薛定谔方程 第三章 力学量的算符表示 第四章 态和力学量的表象 第五章 微扰理论 第六章 弹性散射
第七章 自旋和全同粒子
?301.1.由黑体辐射公式导出维恩位移定律:?mT?b, b?2.9?10m?C。
证明:由普朗克黑体辐射公式:
8?h?31 ??d??d?, h?3c ekT?1c c及?? 、d???2d?得 ?? 8?hc1?? ?5, hc?e?kT?1
d?hc令x? ,再由??0,得?.所满足的超越方程为 ?d? kTxex 5?x e?1
hc x?4.97,即得用图解法求得?4.97,将数据代入求得?mT?b, b?2.9?10?3m?0C ?mkT
1.2.在0K附近,钠的价电子能量约为3eV,求de Broglie波长. 0hh?10解:? ???7.09?10m?7.09A p2mE
# 3E?kT,求T?1K时氦原子的de Broglie波长。 1.3. 氦原子的动能为 2 h0hh?10??12.63?10m?12.63A 解:? ??p2mE3mkT ?23?1其中m?4.003?1.66?10?27kg,k?1.38?10J
量子力学教程习题答案
1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长?m与温度T成反比,即
; ?m T=b(常量)
并近似计算b的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式
8?hv3?vdv?3?c1hvkTdv, (1)
e?1以及 ?v?c, (2)
?vdv???vd?, (3)
有
dvd??c?d????????v(?)d?
?(?)?v?c??????8?hc?5??1ehc?kT,?1这里的??的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。
本题关注的是λ取何值时,??取得极大值,因此,就得要求?? 对λ的一阶导数为零,由此可求得相应的λ的值,记作?m。但要注意的是,还需要验证??对λ的二阶导数在?m处的取值是否小于零,如果小于零,那么前面求得的?m就是要求的,具体如下:
???'8?hc?6?e1hc?kT?hc1??5??hc???kT??kT?1?1?e11?ehc?hc?kT???0 ???? ?5?hc
量子力学教程习题答案
1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长?m与温度T成反比,即
; ?m T=b(常量)
并近似计算b的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式
8?hv3?vdv?3?c1hvkTdv, (1)
e?1以及 ?v?c, (2)
?vdv???vd?, (3)
有
dvd??c?d????????v(?)d?
?(?)?v?c??????8?hc?5??1ehc?kT,?1这里的??的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。
本题关注的是λ取何值时,??取得极大值,因此,就得要求?? 对λ的一阶导数为零,由此可求得相应的λ的值,记作?m。但要注意的是,还需要验证??对λ的二阶导数在?m处的取值是否小于零,如果小于零,那么前面求得的?m就是要求的,具体如下:
???'8?hc?6?e1hc?kT?hc1??5??hc???kT??kT?1?1?e11?ehc?hc?kT???0 ???? ?5?hc
量子力学第二版,苏汝铿4.5-4.73
量子力学第二版,苏汝铿
第四章 矩阵力学基础(II)—表象理论
龙时磊 200431020006
姜雷 200431020010
4.5设粒子处在宽度为a的无限深方势阱中,求在能量表象中粒子的坐标和动量的矩阵表示。
解:一维无限深方势阱的归一化波函数是:
2n x
n(x) sin
aa
的矩阵元是: 该波函数是能量本征函数,任何力学量F
Fmn m n
2am x n x F dx sinFsindx 0a0aa
a
此公式用于坐标矩阵:
xmn
2am xn xsinsindx 0aaa1a(m n) x(m n) x [cos cos]xdx (1)
0aaa4amn 2{1 ( 1)m n 1}22[m n]
此式不适用于对角矩阵元. 当m=n时,得对角矩阵元:
xmm
a 2m xa sinxdx ⑵ 20a2a m x dm x2 n
sinsindx 2 0aidxaa2i
动量矩阵元(非对角的)
pmn
sin
m xn x
cosdx aa
2 imn
(1 ( 1)n m 1) ⑶ 222
a(n m)2 n 2
ai
pmm
sin
m xn x
cosdx 0