正弦余弦转换

“正弦余弦转换”相关的资料有哪些?“正弦余弦转换”相关的范文有哪些?怎么写?下面是小编为您精心整理的“正弦余弦转换”相关范文大全或资料大全,欢迎大家分享。

九下7.2正弦余弦(2)

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

§7.2 正弦、余弦(2)---- [ 教案]

备课时间: 主备人:

班级___________________姓名________________________学号__________ 【课前复习】:

【新课导入】:

如图,在Rt△ABC中, ∠C=90o, AC=12, BC=5. 求: sinA、cosA、sinB、cosB的值.

你发现sinA与cosB 、 cosA与sinB的值有什么关系吗? 结论:

【典型例题】: 1. 比较大小

若?A??B?90?sinA=cosBcosA=sinB

2.已知α为锐角:

12

(1) sin α= ,则cosα=______,tanα=______,

(2) cosα= 1 ,则sinα=______,tanα=______,

2

1(3)tanα= ,则sinα=______,cosα=______,

2

3.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CD=8,AC=10 (1)求锐角A、B的正弦、余弦: (2)求AB、BD的长

4.如图,在△ABC中, ∠C=90o,D是BC的中点,且

1正弦定理余弦定理

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

正弦定理 余弦定理

一、一周知识概述

本周主要学习了正弦定理、余弦定理的推导及其应用,正弦定理是指在一个三角形

中,各边和它所对角的正弦的比相等.即余弦定理是指三角形任何

一边的平方等于其它两边平方的和减去这两边与它们夹角的余弦的积的两倍,即a2=b2+c2-2bccosA,b2=c2+a2-2cacosB, c2=a2+b2-2abcosC.通过两定理的学习,掌握正弦定理和余弦定理,并能利用这两个定理去解斜三角形,学会用计算器解决解斜三角形的计算问题,熟悉两定理各自解决不同类型的解三角形的问题.认识在三角形中,已知两边和其中一边的对角解三角形,产生多解的原因,并能准确判断解的情况. 二、重点知识讲解 1、三角形中的边角关系

在△ABC中,设角A、B、C的对边分别为a、b、c,则有 (1)角与角之间的关系:A+B+C=180°; (2)边与角之间的关系:

正弦定理:

余弦定理:a2=b2+c2-2bccosA b2=c2+a2-2accosB c2=a2+b2-2abcosC 射影定理:a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA

2、正弦定理的另三种表示形式:

3、余弦定理的另一种表示形式:

4、正弦定

正弦定理和余弦定理

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

一、选择题

1.在△ABC中,A=60°,B=75°,a=10,则c=( )

A.52

106 3

2、在 ABC中,已知b B.2 D.6 2,c 1,B 45 ,则a=( )

2 1 D. 3 2 A. 6 2 B. 26 2 C. 2

3、在 ABC中,若a 2bsinA,则B= ( )

A. 30 B. 60 C. 30或150 D. 60或120

2224、在 ABC中,已知a c b ab,则 C ( )

A. 60 B. 45或135 C. 120 D. 30

5、在△ABC中,sin2A=sin2B+sin2C,则△ABC为( )

A.直角三角形 B.等腰直角三角形

C.等边三角形 D.等腰三角形

6、在 ABC中,a:b:c 3:5:7,则 ABC的最大角是 ( )

A. 30 B. 60 C. 90 D. 120

37.在△ABC中,已知B=45°,c=2,b=,则

正弦定理、余弦定理基础练习

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

正弦定理、余弦定理

基础练习

1.在△ABC中:

(1)已知A?45?、B?30?、a?53,求b;

(2)已知B?75?、C?45?、a?6,求c. 2.在△ABC中(角度精确到1°):

(1)已知b?15、c=7、B=60°,求C; (2)已知a?6、b=7、A=50°,求B. 3.在△ABC中(结果保留两个有效数字): (1)已知a=5、b=7、C=120°,求c;

(2)已知b?33、c=7、A=30°,求a. 4.在△ABC中(角度精确到1°): (1)已知a?6、b=7、c?9,求A; (2)已知a?33、b?4、c?79,求C.

5.根据下列条件解三角形(角度精确到1°,边长精确到0.1): (1)A?37?,B?60?,a?5; (2)A?40?,B?45?,c?7; (3)B?49?,a?5,b?3; (4)C=20 ,a=5,c=3; (5)a?4,b?7,C?80?; (6)a?10,b?13,c?14. 6.选择题:

(1)在△ABC中,下面等式成立的是( ).

A.abcosC?bccosA B.absin

必修5 正弦定理、余弦定理

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

【本讲教育信息】

一. 教学内容:

必修5 正弦定理、余弦定理

二、教学目标

(1)熟练的掌握正弦定理、余弦定理及其简单的应用。

(2)在正、余弦定理应用过程中,体会利用函数与方程的数学思想处理已知量与未知量的关系。

利用等价转化的数学思想、分类讨论的数学思想应用正弦定理、余弦定理解题。

三、知识要点分析

1、正弦定理的有关知识(设△ABC 的,,A B C ∠∠∠所对的边是a ,b ,c ,外接圆半径是R ) 正弦定理:2sin sin sin a b c R A B C ===,

由正弦定理得(i )2sin sin sin sin sin sin a b c a b c R A B C A B C ++====++

(ii )::sin :sin :sin a b c A B C =。

正弦定理应用:(1)已知一边和两角求其余的边和角。

2、三角形的面积公式

(1)1,(2a a S a h h a =

?是边上高)(h a 是a 边上的高)(2)111S sin sin sin 222ab C bc A ac B ===。 (3) 1(),(2S a b c r r =++?是内切圆半径) 3、余弦定理的有关知识。(设△A, B, C ABC ∠∠∠的三个角所

必修5 正弦定理、余弦定理

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

【本讲教育信息】

一. 教学内容:

必修5 正弦定理、余弦定理

二、教学目标

(1)熟练的掌握正弦定理、余弦定理及其简单的应用。

(2)在正、余弦定理应用过程中,体会利用函数与方程的数学思想处理已知量与未知量的关系。

利用等价转化的数学思想、分类讨论的数学思想应用正弦定理、余弦定理解题。

三、知识要点分析

1、正弦定理的有关知识(设△ABC 的,,A B C ∠∠∠所对的边是a ,b ,c ,外接圆半径是R ) 正弦定理:2sin sin sin a b c R A B C ===,

由正弦定理得(i )2sin sin sin sin sin sin a b c a b c R A B C A B C ++====++

(ii )::sin :sin :sin a b c A B C =。

正弦定理应用:(1)已知一边和两角求其余的边和角。

2、三角形的面积公式

(1)1,(2a a S a h h a =

?是边上高)(h a 是a 边上的高)(2)111S sin sin sin 222ab C bc A ac B ===。 (3) 1(),(2S a b c r r =++?是内切圆半径) 3、余弦定理的有关知识。(设△A, B, C ABC ∠∠∠的三个角所

1.2.1正弦、余弦定理应用

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

正余弦定理的应用

复习

正弦定理:

a b c sin A sin B sin C

余弦定理:

a2=b2+c2-2bccosA b2= a2+c2-2accosB c2 =a2+ b2-2abcosC

余弦定理的推论:b +c -a cos A 2bc 2 2 2 c +a -b cos B 2ca 2 2 2 a +b -c cos C 2ab2 2 2

应用一:测量距离例1 如图1.2-1 设A、B 两点在河的两岸,要测量 两点之间的距离. 测量者在 A的同侧,在所在的河岸 边选定一点C,测出AC的 510 距离是55 m, ∠BAC=510, A ∠ACB=750.求A、B两点间 的距离.(精确到0.1 m)

B

750

C

解:根据正弦定理,得AB AC , sin C sin B

AC sin C 55sin C AB sin B sin B55sin 750 sin(1800 - 510 - 750 )55sin 750 65.7(m) 0 sin 54

答:A、B两点间的距离为65.7米

例2 如图1.2-2 设A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间 距离的方法.A B

D

δ

γ

β α

C

考点17 正弦定理和余弦定理

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

温馨提示:

此题库为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,点击右上角的关闭按钮可返回目录。

考点17 正弦定理和余弦定理

一、选择题

1.(2012·湖南高考理科·T7)在△ABC中,AB=2 AC=3 AB·BC=1,则BC=( )

【解题指南】利用向量的数量积计算公式,和余弦定理组成方程组解出BC的值。

uuuruuur【解析】选A.由AB?BC

uuur

2BCcos(p-B)=1,cosB=-1.2BC

1,

由余弦定理

AC2=AB2+BC2-2AB BCcosB.即9=4+BC2-4BCcosB 5=BC2+4BC

1,

2BCBC2=3,\BC=

故选A.

2.(2012·湖南高考文科·T8)在△ABC中,

,BC=2,B =60°,则BC边上的高等于( )

A

B.

C. D.

【解题指南】本题考查余弦定理、三角形面积公式,考查方程思想、运算能力,是历年常考内容.根据余弦定理和直角三角形中的三角函数定义,列出方程组,解出答案。 【解析】选B.

222

设AB c,在△ABC中,由余弦定理知AC AB BC 2AB BC cosB,

22

c7 c 4 2 2 c c

正弦函数余弦函数的图像说课

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

《正弦函数、余弦函数的图象》说课 大庆实验中学 郝明泉 今天我说课的题目是正弦函数、余弦函数的图象,我将从下面五个方面来进行说课。

一 教材结构与内容分析: 1) 教材中的地位与作用

《正弦函数、余弦函数的图象》是人教A版教科书,必修4第1章第4节第一课时内容,是在学生已掌握了一些基本函数的图象及其画法的基础上,进一步研究三角函数图象画法的一节课。主要学习用正弦线画出正弦函数图象,并在此基础上由诱导公式及图象变换得到余弦函数的图象,以及用“五点法”画出正弦函数和余弦函数图像的简图,并会用这一方法画出与正、余弦函数有关的某些简单三角函数在一个周期内的简图。为进一步学习正、余弦函数及正弦型函数y?Asin(?x??)的图象,运用数形结合思想研究三角函数的性质奠定坚实的知识基础。对知识的掌握起到了承上启下的作用,在整个三角知识体系里占据着重要地位。 2)

教学目标

依据教学大纲及教学目标的要求,同时考虑到图像对于培养学生数形结合思想的重要性,我确定本节课的教学目标如下: 知识与技能目标:

能刻画正弦函数、余弦函数的图像。能用“五点法”

1.4.2 正弦函数、余弦函数的性质(二)

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

高一数学人教A版必修四课件

1.4.2 正弦函数、余弦函数的性质(二)

高一数学人教A版必修四课件

1.请回答:什么叫做周期函数? 对于函数f(x),如果存在一个非零常数T,使得当x 取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个 函数的周期.

2.正弦函数、余弦函数是否是周期函数?周期是 多少?最小正周期是多少? 2k (k Z且k 0) 正弦函数、 余弦函数都是周期函数,都是它们的周期,最小正周期均是 2 .

高一数学人教A版必修四课件

3.函数的周期性对于研究函数有什么意义?对于周期函数,如果我们能把握它在一个周期

内的情况,那么整个周期内的情况也就把握了 .这是研究周期函数的一个重要方法,即由一个周期

的情况,扩展到整个函数的情况.

高一数学人教A版必修四课件

1.掌握正弦函数、余弦函数的奇偶性、单调性. (重点) 2.会利用三角函数的单调性判断一组数的大小, 会求给出的三角函数的单调区间.(重点、难点)

高一数学人教A版必修四课件

一、奇偶性探究1.观察正弦曲线和余弦曲线的对称性,你有什么发现?y1 -3 5 2

正弦曲线关于原点O对称 x 2

-2

3 2

-

2

O-1

3 2

2

5