微积分题型总结的书推荐
“微积分题型总结的书推荐”相关的资料有哪些?“微积分题型总结的书推荐”相关的范文有哪些?怎么写?下面是小编为您精心整理的“微积分题型总结的书推荐”相关范文大全或资料大全,欢迎大家分享。
微积分题型总结
.
微积分题型总结
第一部分 函 数
函数是整个高等数学研究的主要对象,因而成为考核的对象之一。特别是一元函数的定义和性质,其中包括反函数、复合函数、隐函数、初等函数和分段函数的定义和性质。
一、 重点内容提要
1、函数定义中的关键要素是定义域与对应法则,这里要特别注意两点:
①两个函数只有当它们的定义域和对应法则都相同时,才能说它们是相同的函数。 ②分段函数是一个函数而不是几个函数。 求函数的定义域:(答案只要求写成不等式的形式,可不用区间表示)
对于用数学式子来表示的函数,它的定义域就是使这个式子有意义的自变量x的取值范围(集合) 主要根据:
①分式函数:分母≠0
②偶次根式函数:被开方式≥0 ③对数函数式:真数式>0
④反正(余)弦函数式:自变量x?1
例1例2例3求函数y?x?x的定义域。求函数y=ln(x?2y)4?x?y22 的定义域。2?x 的定义域1-2x2例4 y?ln(x?3x)?arccosx
在上述的函数解析式中,上述情况有几种就列出几个不等式组成不等式组解之。 2、关于反函数定义,我们仅要求掌握变量反解法。 3、函数的简单性质,重点掌握奇偶性、单调性。 4、关于复合函数定义
将复合函数拆成
微积分总结(下册) - 图文
微积分(B II)总结
chapter 8 多元函数微分学
8.1 多元函数的极限
先看极限是否存在(一个方向组(y=kx)或两个方向趋近于极限点(给定方向必须当x满足极限过程时,y也满足极限过程))。如果存在,能先求的先求,能用等价无穷小替换的就替换,最后考虑夹逼准则。
8.2 偏导数
点导数定义(多用于分段函数的分界点)
fx(x,y)=limDx?0f(x0+Dx,y0)-f(x0,y0)Dx fx(x0+Dx,y0)-fx(x0,y0)Dx
fxx(x0,y0)=lim例:求
Dx?0f(x,y)=xy,fx(0,0),就是求分段函数的点偏导数
f(x,y)在(x0,y0)连续,但偏导数不一定存在(如:锥)
8.3 全微分
函数可微,则偏导数必存在(逆否命题可证明函数不可微,证明时,把右边前两项移到左边,看它是不是r的高阶无穷小)
?z?zDz=Dx+Dy+o(r)?x?y?z?zdz=dx+dy?x?y
例:
对于某一点处的全微分,也可能要用到点导数。
8.4多元复合函数求导 8.4.1链式求导法则
z(x,y)=f(u(x,y),v(x,y))?z?f?u?f?v=+?x?u?x?v?x
链式求导法则要求函数对每个中间变量求偏导,乘
微积分
1.高等数学概念
微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。 定义
设函数f(x)=0在[a,b]上有解,在[a,b]中任意插入若干个分点 a=x0 把区间[a,b]分成n个小区间 [x0,x1],...[xn-1,xn]。 在每个小区间[xi-1,xi]上任取一点ξi(xi-1≤ξi≤xi),作函数值f(ξi)与小区间长度的乘积f(ξi)△xi,并作出和 如果不论对[a,b]怎样分法,也不论在小区间上的点ξi怎样取法,只要当区间的长度趋于零时,和S总趋于确定的极限I, 这时我们称这个极限I为函数f(x)在区间[a,b]上的定积分, 记作 定积分 即: 展开式 编辑本段微积分学的建立 从微积分成为一门
微积分
篇一:微积分入门
校 本 课 程
论文题目:微积分初步
作 者:高红桃
日 期:2011-09-11
序
中国战国时代(公元前7世纪),我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”,即老庄哲学中所有的无限可分性和极限思想;公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。这是朴素的、也是很典型的极限概念。而极限理论便是微分学的基础。
古希腊时期(公元前3世纪),阿基米德用内接正多边形的周长来穷尽圆周长,而求得圆周率愈来愈好的近似值,也用一连串的三角形来填充抛物线的图形,以求得其面积。这是穷尽法的古典例子之一,可以说是积分思想的起源。
17世纪,许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。
17世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。
19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认
微积分
1.高等数学概念
微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。 定义
设函数f(x)=0在[a,b]上有解,在[a,b]中任意插入若干个分点 a=x0 把区间[a,b]分成n个小区间 [x0,x1],...[xn-1,xn]。 在每个小区间[xi-1,xi]上任取一点ξi(xi-1≤ξi≤xi),作函数值f(ξi)与小区间长度的乘积f(ξi)△xi,并作出和 如果不论对[a,b]怎样分法,也不论在小区间上的点ξi怎样取法,只要当区间的长度趋于零时,和S总趋于确定的极限I, 这时我们称这个极限I为函数f(x)在区间[a,b]上的定积分, 记作 定积分 即: 展开式 编辑本段微积分学的建立 从微积分成为一门
微积分入门
微积分入门
一.微商(导数)
1.用来分析变化的工具 2.斜率=dy/dx
3.极限:一个值无限接近另一个值的状态。表示:lim(x→0)f(x)=b 4.正向接近(+∞)与负向接近(-∞)。当从两侧接近的结果不同时,不存在极限
5.极限的模式:?lim(x→a)f(x) 不存在(如lim(x→a)1/x) ?lim(x→a)f(x)存在,但不 是f(a)(如lim(x→1)(x^2-3*x+2)/(x-1)) ?lim(x→a)f(x)存在,是f(a). 6.求导公式:lim(h→0)( f(x+h) -f(x))/h 二.导函数
1对f(x)求导得到的导函数也是函数。f ’(x)=lim(h→0)( f(x+h) -f(x))/h=lim(dx→0)dy/dx 2.导数表示的两种方式:A.如上 B.(莱布尼茨法)dy/dx df(x)/dx F’’(x)=(d/dx)*(d/dx)*y 3.求导基本公式:?p=C p’=0(p为常数)?(px)’=p ?{f(x)+g(x)}’=f’(x)+g’(x) 4.常用求导公式:?(x^n)’=lim(h→0)((x+h) ^n-x^
微积分-积分公式定理集锦
各种积分公式,公式大概分为四类,
北京理工大学
微积分-积分定理集锦
常用积分公式 定理
程功 2010/12/22
各种积分公式,公式大概分为四类,
定理
1.积分存在定理
1)当函数f(x)在区间 a,b 上连续时,称f(x)在区间 a,b 上可积.
2)设函数f(x)在区间 a,b 上有界,且只有有限个间断点,则f x 在区间 a,b 上可积。
2.性质:1 [f(x) g(x)]dx f(x)dx g(x)dx(此性质可以推广到有限多个函数求和的
a
a
a
bbb
情况)。
性质2. kf(x)dx k f(x)dx k为常数
a
a
bb
假设a c b,性质3: f(x)dx f(x)dx f(x)dx(定积分对于积分区间具有可加性)
a
a
c
bcb
性质4: 1 dx badx b a
a
b
性质5:如果在区间 a,b 上f(x) 0,则 f(x)dx 0 (a b)
a
b
推论(1):如果在区间[a,b]上,f(x) g x 则 f(x)dx g(x)dx(a b)
a
a
bb
推论(2):
b
a
f()xdx fx a b
a
b
性质6:设M及m分别是函数f x 上的最大值与最小值,则
m(b a) f(x)dx M(b a)
a
b
3.定积分中值定理
如果函数f x
微积分期末复习总结资料(精品)
微积分期末复习总结资料(精品)
首先,就是要有正确的复习方法。在这里,我们也给大家提供几种有效的方法以供参考:
第一、大家首先要克服浮躁的毛病,养成看课本的习惯。其实,所有的考试都是从课本知识中发散来的,所以在复习时就必须看课本,反复的看,细节很重要,特别是基本概念和定理。详细浏览完课本之后,认真复习课本上的课后习题和学习指导上每章的复习小结,力争复习参考题每题都过关。复习小结了然于心,然后再复习。
第二、制定复习计划,把时间合理分配到四个章节,尤其是第二章极限尤为重点,是整个上学期微积分理论的基础。学好极限,对于理解连续还有导数有着重要意义,很多同学觉得越学越吃力的原因还是在于学期初没有扎实的打好知识基础。
第三、理清知识结构网络图(极限、连续、导数、不定积分),然后根据知识结构网络图去发散、联想基础概念和基本定理和每个知识点的应用计算题,对本章节的内容有个清晰的思路,这样就可以在整体上把握书本知识。从整体上把握书本知识有利于我们对于试卷中的一些基本的题目有一个宏观的把握,对于试卷中的问答题,可以从多角度去理解和把握,这样就能够做到回答问题的严密性。
第四、将课上老师所讲授的典型例题及做习题过程遇到的难题还有易错的题归纳整理,分析。数学当中很容易出现
微积分复习整理
微积分复习整理
第一章 极限与连续 ..................... 3
数列的极限 ............................................................................................................... 3
定义1:数列的极限 ........................................................................................... 3
定义2:发散和收敛 ........................................................................................... 3 函数的极限 ............................................................................................................... 3
定义3:函数的极限 .............................
经典的微积分习题库
习题1—2
1.确定下列函数的定义域:
1(1)y?;
2x?9(4)y?32.求函数
?1?siny??x??0(x?0)(x?0)(2)y?logaarcsinx;
(3)y?2; sin?x1x?1?loga(2x?3);(5)y?arccos?loga(4?x2) x?22
的定义域和值域。
3.下列各题中,函数f(x)和g(x)是否相同?
(1)f(x)?x,g(x)?x2;
2
(2)f(x)?cosx,g(x)?1?2sin2(4)f(x)??2;
x?1,g(x)?x?1; x?14.设f(x)?sinx证明:
(3)f(x)?x,g(x)?x0。 xf(x??x)?f(x)?2sin?x?x??cos?x?? 22??5.设f(x)?ax2?bx?5且f(x?1)?f(x)?8x?3,试确定a,b的值。
6.下列函数中哪些是偶函数?哪些是奇函数?哪些是既非奇函数又非偶函数?
1?x22223(1)y?x(1?x) (2)y?3x?x; (3)y?;
1?x2ax?a?x(4)y?x(x?1)(x?1); (5)y?sinx?cosx?1 (6)y?。
27.设f(x)为定义在(??,??)上的任意函数,证明:
(1)