高中必修二数学立体几何试题及答案
“高中必修二数学立体几何试题及答案”相关的资料有哪些?“高中必修二数学立体几何试题及答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中必修二数学立体几何试题及答案”相关范文大全或资料大全,欢迎大家分享。
必修二立体几何较难题汇总
1.四面体ABCD四个面的重心分别为E、F、G、H,则四面体EFGH的表面积与四面体ABCD的表面积的比值是( ) A)
1111 B) C) D) 271698
如图,连接AF、AG并延长与BC、CD相交于M、N, 由于F、G分别是三角形的重心, 所以M、N分别是BC、CD的中点, 且AF:AM=AG:AN=2:3, 所以FG:MN=2:3,
又MN:BD=1:2,所以FG:BD=1:3, 即两个四面体的相似比是1:3,
所以两个四面体的表面积的比是1:9;故选C.
如图,平面α∥平面β∥平面γ,两条直线l,m分别与平面α,β,γ相交于点A,B,C和点D,E,F.已知AC=15cm,DE=5cm,AB︰BC=1︰3,求AB,BC,EF的长
设平面α‖β,A、C∈α,B、D∈β直线AB与CD交于S,若AS=18,BS=9,CD=34,则CS=?68/3或68
与空间四边形ABCD四个顶点距离相等的平面共有多少个? 七个
你可以把它想象成一个三棱锥
四个顶点各对应一个 有四个,
两条相对棱对应一个 共三组相对棱 因此有三个
总共有七个
如图,在四棱锥P-ABCD中,平
覃巨石:高中数学必修二立体几何精讲精练
高中数学必修二立体几何精讲精练
第一部 精讲题
第一节 简单几何体
A 组
1.下列命题中,不正确的是______.
①棱长都相等的长方体是正方体
②有两个相邻侧面为矩形的棱柱为直棱柱
③有两个侧面与底面垂直的棱柱为直棱柱
④底面为平行四边形的四棱柱叫平行六面体
解析:由平行六面体、正方体的定义知①④正确;对于②,相邻两侧面垂直于底面,则侧棱垂直于底面,所以该棱柱为直棱柱,因而②正确;对于③,若两侧面平行且垂直于底面,则不一定是直棱柱.答案:③
2.(2009年高考全国卷Ⅱ改编)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到如图的平面图形,则标“△”的面的方位是________.
解析:将所给图形还原为正方体,如图所示,最上面为△,最左面为东,最里面为上,
将正方体旋转后让东面指向东,让“上”面向上可知“△”的方位为北.答案:北
3.(2009年高考安徽卷)对于四面体ABCD ,下列命题正确的是________.(写出所有正确命题的编号).
①相对棱AB 与CD 所在的直线是异面直线;
②由顶点A 作四面体的高,其垂足是△BCD 三条高线的交点;
③若分别作△ABC 和△ABD 的边AB 上的高,
高中数学必修2立体几何知识点
3
高中数学 必修2知识点
第一章 空间几何体
1.1柱、锥、台、球的结构特征(略)
棱柱:
棱锥:
棱台:
圆柱:
圆锥:
圆台:
球:
1.2空间几何体的三视图和直观图
1 三视图:
正视图:从前往后 侧视图:从左往右 俯视图:从上往下
2 画三视图的原则: 长对齐、高对齐、宽相等
3直观图:斜二测画法
4斜二测画法的步骤:
(1).平行于坐标轴的线依然平行于坐标轴;
(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;
(3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图
1.3 空间几何体的表面积与体积
(一 )空间几何体的表面积
1棱柱、棱锥的表面积: 各个面面积之和
2 圆柱的表面积
3 圆锥的表面积2S
rl r ππ=+ 4 圆台的表面积22S rl r Rl R ππππ=+++ 5 球的表面积24S R π=
6扇形的面积公式213602n R S lr π==扇形
(其中l 表示弧长,r 表示半径) (二)空间几何体的体积
1柱体的体积 V S h =?底 2锥体的体积 13
V S h =?底 3台体的体积
1)3V S S
必修二高中数学立体几何专题——空间几何角和距离的计算..
立体几何专题:空间角和距离的计算
一 线线角 1.直三棱柱A1B1C1-ABC,∠BCA=900,点D1,F1分别是A1B1和A1C1的中点,若BC=CA=CC1,求BD1与AF1所成角的余弦值。
B1D1A1F1C1BAC
2.在四棱锥P-ABCD中,底面ABCD是直角梯形,∠BAD=900,AD∥BC,AB=BC=a,AD=2a,且PA⊥面ABCD,PD与底面成300角,(1)若AE⊥PD,E为垂足,求证:BE⊥PD;(2)若AE⊥PD,求异面直线AE与CD所成角的大小;
PEBACD
二.线面角
1.正方体ABCD-A1B1C1D1中,E,F分别为BB1、CD的中点,且正方体的棱长为2,(1)求直线D1F和AB和所成的角;(2)求D1F与平面AED所成的角。
D1C1B1ECA1DAFB
2.在三棱柱A1B1C1-ABC中,四边形AA1B1B是菱形,四边形BCC1B1是矩形,C1B1⊥AB,
AB=4,C1B1=3,∠ABB1=600,求AC1与平面BCC1B1所成角
B1的大小。 C1 A1 CBA
1
三.二面角
1.已知A1B1C1-ABC是正三棱柱,D是AC中点,(1)证明AB1∥平面DBC1;(2)设AB1⊥BC1,求以BC
高考数学立体几何试题汇编
高考数学立体几何试题汇编
一、选择题
1.(全国Ⅰ?理?7题)如图,正四棱柱ABCD?A1B1C1D1中,AA1?2AB,则异面直线A1B与AD1所成角的余弦值为( D )
A.
1234 B. C. D. 55552.(全国Ⅱ?理?7题)已知正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,
则AB1与侧面ACC1A1所成角的正弦等于( A )
A. 6 4 B.2310 C. D. 2243.(北京?理?3题)平面?∥平面?的一个充分条件是( D )
A.存在一条直线?,a∥?,a∥? B.存在一条直线a,a??,a∥? C.存在两条平行直线a,b,a??,b??,a∥?,b∥? D.存在两条异面直线a,b,a??,a∥?,b∥?
4.(安徽?理?2题)设l,m,n均为直线,其中m,n在平面?内,“l??”是l?m且“l?n”的( )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
5.(安徽?理?8题)半径为1的球面上的四点A,B,C,D是正四面体的顶点,则A与B两点间的球面距离为( )
A.arcco
2013立体几何专题答案(二)
二模答案
1、解:(I )因为点P 在平面ADC 上的正投影O 恰好落在线段AC 上
所以PO ⊥平面ABC ,所以PO ⊥AC …………………2分
因为AB BC =,
所以O 是AC 中点, …………………3分 所以//OE PA …………………4分 同理//OF AD
又,OE OF O PA AD A ==
所以平面//OEF 平面PDA …………………6分 (II )因为//OF AD ,AD CD ⊥
所以OF CD ⊥ …………………7分 又PO ⊥平面ADC ,CD ?平面ADC
所以PO ⊥CD …………………8分 又OF PO O =
所以CD ⊥平面POF
高中数学立体几何真题试题大全
. .
上海立体几何高考试题汇总
(01春)若有平面?与?,且????l,???,P??,P?l,则下列命题中的假命题为( )
(A)过点P且垂直于?的直线平行于?.(B)过点P且垂直于l的平面垂直于?. (C)过点P且垂直于?的直线在?内. (D)过点P且垂直于l的直线在?内.
(01)已知a、b为两条不同的直线,α、β为两个不同的平面,且a⊥α,b⊥β,则下列命题中的假命题是( )D
A. 若a∥b,则α∥β B.若α⊥β,则a⊥b
C.若a、b相交,则α、β相交 D.若α、β相交,则a、b相交
(02春)下图表示一个正方体表面的一种展开图,图中四条线段AB、CD、EF和GH 在原正
方体中相互异面的有 对。3
(02)若正四棱锥的底面边长为23cm,体积为4cm3,则它的侧面与底面所成的二面角的大小是 30?
(03春)关于直线a,b,l以及平面M,N,下列命题中正确的是( ).
(A) 若a//M,b//M,则a//b (B) 若a//M,b?a,则b?M
(C) 若a?M,b?M,且l?a,l?b,则l?M
高中数学《必修2》立体几何知识点及解题思路
具体解析必修二
第一章 空间几何体
一、常见几何体的定义
能说出棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的定义和性质。
二、常见几何体的面积、体积公式
1.圆柱:侧面积S侧 cl 2 rl (其中c是底面周长,r是底面半径,l是圆柱的母线,也是高)
表面积S表 S侧 S底 2 rl 2 r2 2 r(r l)
V柱体 sh r2h
12.圆锥:侧面积S侧 cl rl (其中c是底面周长,r是底面半径,l是圆锥的母线) 2
表面积S表 S侧 S底 rl r2 r(r l) 11 V椎体 sh r2h 33
(2 r 2 R)l3.圆台:侧面积S侧 (r R)l (其中r、R是上下底面半径,l是圆台的母线)2
表面积S表 S侧 S底 (r R)l r2 R2 (rl Rl r2 R2) 1 V台体 (S' S'S S)h (其中S'、S是上下底面面积,h是圆台的高) 3
44.球:表面积S表 4 R2,体积V球 R3 3
三、直观图:会用斜二侧画法画出平面图形的直观图。
画法步骤:①在原图中画一个直角坐标系,在新图中画一个夹角为45°的坐标系; ②与x轴平行的线段仍然与x轴平行,长度不变;
与y
高中数学立体几何详细教案
【中学数学教案】
立体几何
教案
一,空间直线与直线的关系 a ,相交 b ,平行 c ,异面 a ,
相交直线 空间中
平行于同一条直线的两条直线平行 b, 平行公理: c, 异面直线: 1,求异面直线所成角问题 注:利用平
行公理找角,利用余弦定理计算,结果要锐角或直角
??
0?090异面直线所成角的范围
, ㈠
平移法利用平行公理把异面直线所成的角转化为相交直线所成的角 CCABDBABCD?B和C 例:正方体中,E,F分别是中点,则直线AE111111
和BF所成角的余弦值 ㈡ 补形法 补形:底面是直角三角形的直三棱柱可以补成一个长方体 ?CAB 例:在直三棱柱中,,点分别是
90DF?ABC,?BCA?11111CCABA
中点,
BC=CA=,则所成角的余弦值 CDF,B与A1111111 1303015A、
B、 C、 D、 2101510 2,求异面直线之间的距离问题 和两条异面直线垂直相交的直线叫做异面直线的公垂线, 公垂线夹在两条异面直线之间的长度叫做
高中文科数学立体几何部分整理
高中文科数学立体几何部分整理
1 / 1 高中文科数学立体几何部分整理
第一章 空间几何体
(一)空间几何体的三视图及直观图
1.投影:区分中心投影及平行投影。平行投影分为正投影和斜投影。
2.三视图——是观察者从三个不同位置观察同一个空间几何体而画出
的图形;
正视图——光线从几何体的前面向后面正投影,得到的投影图; 侧视图——光线从几何体的左面向右面正投影,得到的投影图; 正视图——光线从几何体的上面向下面正投影,得到的投影图;
注:(1)俯视图画在正视图的下方,“长度”及正视图相等;侧视图画
在正视图的右边,“高度”及正视图相等,“宽度”及俯视图。(简记为“正、侧一样高,正、俯一样长,俯、侧一样宽”.
(2)正视图,侧视图,俯视图都是平面图形,而不是直观图。
3.直观图:
3.1直观图——是观察着站在某一点观察一个空间几何体而画出的图形。直观图通常是在平行投影下画出的空间图形。
3.2斜二测法:
step1:在已知图形中取互相垂直的轴Ox 、Oy ,(即取90xoy ∠=? ); step2:画直观图时,把它画成对应的轴'',''o x o y ,取'''45(135)x o y or ∠=??,它们确定的平面表示水平平面;
高中文科数学立体几何部分整理
1 / 1