数量积的坐标表示及运算
“数量积的坐标表示及运算”相关的资料有哪些?“数量积的坐标表示及运算”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数量积的坐标表示及运算”相关范文大全或资料大全,欢迎大家分享。
数量积的坐标运算导学案
奇台县第一中学 高一数学◆必修4第二章◆平面向量导学案共12课时 编写: 校审: 高一数学组
2.4.2平面向量数量积的坐标表示、模、夹角
第9课时
(1)向量a的坐标;(2)若c=(2,-1),求(a?c)?b
【学习目标】
知识目标:1、在坐标形式下,掌握平面向量数量积的运算公式及其变式(夹角公式); 理解模长公式与解析几何中两点之间距离公式的一致性.
例3、在△ABC中,AB=(2, 3),AC=(1, k),且△ABC的一个内角为直角,求k值. 能够用两个向量的坐标来解决与向量的模、夹角、垂直等有关的问题.
【重点难点】 教学重点:平面向量数量积的坐标表示及运算 例4、已知向量a=(k,1),b=(-2,2),且a与b的夹角为锐角,求实数k的取值范围. 教学难点:用两个向量的坐标判断垂直关系
【课前自学】 一、课前准备:阅读课本P106-107 例5、已知a=(1,2),b=(-3,2)当k为何值时,(1)ka?b与a?3b垂直? 二、预习自测
(2)ka?b与a?3b平行吗?平行时它们是同向还是反向? a=(x1,y1)b?(x1,y2)
1.平面向量数量积(内积
应用类比法学习平面向量的坐标表示和数量积
中学生数学
年 !月上
第
#期
高中%
应用类比法学习平面向量的坐标表示和数量积山东省济南市长清第五中学!
&
齐相国
(
类比法是创新思维的一种重要的形式平,
另外还要注意数学符号的正确书写万71(
,
面向量的坐标运算和数量积运算是平面向量运算的主旋律是学习的重点正确理解平面向量的坐标表示和平面向量的数量积的意义、,,(
是向量的坐标表示,
,
,
1
是点的坐标,
表示不能将向量万的坐标写成万能将点,、
1
,
也不
的坐标写成,
一
,
,
刃
弄清点的坐标与向量的坐标平面向量的数量积与实数乘法的区别和联系是学好这一部分(
二平面向量的数一积可通过以下三方面类比来学习%
的关键一点的坐标与向)坐标的异同向量坐标表示的实质是,、
从物理学角度平面向量的数量积是从,
,
物理做功抽象出来的功定义为一个物体在外力=作用下与所产生的位移>的数量积?>一 2=%一=,
向量的坐标是向
量的代数表示任一平面向量可以用一个有序实数对来表示示一个向量(
+
反过来任一有序实数对就表,
,
#%
Α<
欲通过从力做功情况来看可9
,
即一个平面向量就是一个二元有(
以加深我们对数量积运算律的认识若力增
序实数对点的坐标与向量坐标形式上相同都分为横坐标和纵坐标
倍则功也增大,
,
9
倍而当力反转方向时功要变
,
,
向量的坐
应用类比法学习平面向量的坐标表示和数量积
中学生数学
年 !月上
第
#期
高中%
应用类比法学习平面向量的坐标表示和数量积山东省济南市长清第五中学!
&
齐相国
(
类比法是创新思维的一种重要的形式平,
另外还要注意数学符号的正确书写万71(
,
面向量的坐标运算和数量积运算是平面向量运算的主旋律是学习的重点正确理解平面向量的坐标表示和平面向量的数量积的意义、,,(
是向量的坐标表示,
,
,
1
是点的坐标,
表示不能将向量万的坐标写成万能将点,、
1
,
也不
的坐标写成,
一
,
,
刃
弄清点的坐标与向量的坐标平面向量的数量积与实数乘法的区别和联系是学好这一部分(
二平面向量的数一积可通过以下三方面类比来学习%
的关键一点的坐标与向)坐标的异同向量坐标表示的实质是,、
从物理学角度平面向量的数量积是从,
,
物理做功抽象出来的功定义为一个物体在外力=作用下与所产生的位移>的数量积?>一 2=%一=,
向量的坐标是向
量的代数表示任一平面向量可以用一个有序实数对来表示示一个向量(
+
反过来任一有序实数对就表,
,
#%
Α<
欲通过从力做功情况来看可9
,
即一个平面向量就是一个二元有(
以加深我们对数量积运算律的认识若力增
序实数对点的坐标与向量坐标形式上相同都分为横坐标和纵坐标
倍则功也增大,
,
9
倍而当力反转方向时功要变
,
,
向量的坐
平面向量线性运算坐标表示数量积运用强化训练专题练习(一)附答
高中数学专题复习
《平面向量线性运算坐标表示数量积运用》单元过关
检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明 评卷人 得分 一、选择题
1.对任意两个非零的平面向量?和?,定义???????,若平面向量a、b满足????n????a?b?0,a与b的夹角???0,?,且ab和ba都在集合?n?Z?中,则ab??4??2? A.
2.设点M是线段BC的中点,点A在直线BC外,BC?16,?AB?AC???AB?AC??则
2( )
1 2B.1 C.
3 2D.
5(汇编广东理) 2?AM??( )
(A)8 (B)4 (C) 2 (D)1(汇编四川理5)
第二章 2.4.2 平面向量数量积的坐标表示、模、夹角
[课时作业] [A组 基础巩固]
1.以下选项中,不一定是单位向量的有( )
①a=(cos θ,-sin θ);②b=(lg 2,lg 5);③c=(2x,2x);④d=(1-x,x).
-
A.1个 C.3个
-B.2个 D.4个
解析:因为|a|=1,|b|=1,|c|=?2x? 2+?2x? 2 ≥2≠1, |d|=?1-x? 2+x2=2x2-2x+1= 答案:B
2.设向量a=(2,0),b=(1,1),设下列结论中正确的是( ) A.|a|=|b| C.(a-b)⊥b
解析:因为a=(2,0),b=(1,1),
所以|a|=2,|b|=2,故|a|≠|b|,A错误; a·b=(2,0)·(1,1)=2×1+0×1=2,故B错误;
因为a-b=(1,-1),所以(a-b)·b=(1,-1)·(1,1)=0,所以(a-b)⊥b,故C正确. 因为2×1-0×1≠0,所以a与b不共线,故D错误. 答案:C
3.(2014年高考重庆卷)已知向量a=(k,3),b=(1,4),c=(2,1),且(2a-3b)⊥c,则实数k=( ) 9A.-
2C.3
B.0 15D. 21
B.a·b=
2D.a∥b
112
2?
第二章 2.4.2 平面向量数量积的坐标表示、模、夹角
[课时作业] [A组 基础巩固]
1.以下选项中,不一定是单位向量的有( )
①a=(cos θ,-sin θ);②b=(lg 2,lg 5);③c=(2x,2x);④d=(1-x,x).
-
A.1个 C.3个
-B.2个 D.4个
解析:因为|a|=1,|b|=1,|c|=?2x? 2+?2x? 2 ≥2≠1, |d|=?1-x? 2+x2=2x2-2x+1= 答案:B
2.设向量a=(2,0),b=(1,1),设下列结论中正确的是( ) A.|a|=|b| C.(a-b)⊥b
解析:因为a=(2,0),b=(1,1),
所以|a|=2,|b|=2,故|a|≠|b|,A错误; a·b=(2,0)·(1,1)=2×1+0×1=2,故B错误;
因为a-b=(1,-1),所以(a-b)·b=(1,-1)·(1,1)=0,所以(a-b)⊥b,故C正确. 因为2×1-0×1≠0,所以a与b不共线,故D错误. 答案:C
3.(2014年高考重庆卷)已知向量a=(k,3),b=(1,4),c=(2,1),且(2a-3b)⊥c,则实数k=( ) 9A.-
2C.3
B.0 15D. 21
B.a·b=
2D.a∥b
112
2?
第11讲 平面向量数量积与坐标运算(答案版)
第11讲 平面向量的数 量积与坐标运算
满分晋级
向量3级 平面向量的数量积与坐标运算
向量2级 平面向量的线性
运算
向量1级 向量基本概念及运算
新课标剖析
当前形势
内容
平面向量的正交分解及其坐标表示 用坐标表示平面向量的加法、减法
与数乘运算 用坐标表示的平面向量共线的条件
高考 要求
数量积 数量积的坐标表示 用数量积表示两个向量的夹角 用数量积判断两个平面向量的垂直
关系 用向量方法解决简单的问题
平面向量在近五年北京卷(理)考查5分
要求层次 A
B √ √
C √ √ √ √ √
具体要求
掌握平面向量的正交分解及其坐标表示 会用坐标表示平面向量的加法、减法与数乘运算.
理解用坐标表示的平面向量共线的条件. ①理解数量积的含义及其物理意义. ②了解数量积与向量投影的关系.
③掌握数量积的坐标表达式,会进行平面向量数量积的运算.
④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系. ①会用向量方法解决某些简单的平面几何问题.②会用向量方法解决简单的力学问题与一些实际问题.
2012年 (新课标)
2013年 (新课标)
√
北京 高考
2009年
2010年 (新课
高中数学 2.3.3 向量数量积的坐标运算与度量公式课后
1 【课堂新坐标】(教师用书)2013-2014学年高中数学 2.3.3 向量数量积的坐标运算与度量公式课后知能检测 新人教B 版选修
4-5
一、选择题
1.a =(-4,3),b =(5,6),则3|a |2-4a ·b =( )
A .23
B .57
C .63
D .83 【解析】 |a |2=a 2=a ·a =(-4)2+32=25,
a ·
b =(-4,3)·(5,6)=-20+18=-2.
∴3|a |2-4a ·b =3×25-4×(-2)=83.
【答案】 D
2.(2013·宿州高一检测)若a =(2,1),b =(3,4),则向量a 在向量b 方向上的射影为
( )
A .2 5
B .2 C. 5
D .10 【解析】 |a |cos θ=|a |
a ·
b |a ||b |=a ·b |b |=2×3+1×45
=2. 【答案】 B
3.已知a =(-1,3),b =(2,-1)且(ka +b )⊥(a -2b ),则k =( )
A.43
B .-43 C.34 D .-34 【解析】 由题意知(ka +b )·(a -2b )=0,
而ka +b =(2-k,3k -1),a -2b =(-5,5),
故-5(2-k )+5(3k -1)
平面向量的正交分解和坐标表示及运算 (2)
选填,简要介绍文档的主要内容,方便文档被更多人浏览和下载。
§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算 教学目的:
(1)理解平面向量的坐标的概念;
(2)掌握平面向量的坐标运算;
(3)会根据向量的坐标,判断向量是否共线.
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性.
授课类型:新授课
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2
(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4)基底给定时,分解形式惟一. λ1,λ2是被a,e1,e2唯一确定的数量
二、讲解新课:
1.平面向量的坐标表示
如图,在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得
1 a xi yj…………○
我们把(x,y)叫做向量a的(直角)坐标,记作
2 a
平面向量的正交分解和坐标表示及运算 (2)
选填,简要介绍文档的主要内容,方便文档被更多人浏览和下载。
§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算 教学目的:
(1)理解平面向量的坐标的概念;
(2)掌握平面向量的坐标运算;
(3)会根据向量的坐标,判断向量是否共线.
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性.
授课类型:新授课
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2
(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4)基底给定时,分解形式惟一. λ1,λ2是被a,e1,e2唯一确定的数量
二、讲解新课:
1.平面向量的坐标表示
如图,在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得
1 a xi yj…………○
我们把(x,y)叫做向量a的(直角)坐标,记作
2 a