不等式高一怎么合并
“不等式高一怎么合并”相关的资料有哪些?“不等式高一怎么合并”相关的范文有哪些?怎么写?下面是小编为您精心整理的“不等式高一怎么合并”相关范文大全或资料大全,欢迎大家分享。
高一数学不等式证明经典例题
3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
典型例题一
例1 若0?x?1,证明loga(1?x)?loga(1?x)(a?0 且a?1).
分析1 用作差法来证明.需分为a?1和0?a?1两种情况,去掉绝对值符号,然后比较法证明.
解法1 (1)当a?1时,
因为 0?1?x?1,1?x?1, 所以 loga(1?x)?loga(1?x) ??loga(1?x)?loga(1?x) ??loga(1?x2)?0. (2)当0?a?1时, 因为 0?1?x?1,1?x?1 所以 loga(1?x)?loga(1?x) ?loga(1?x)?loga(1?x) 2 ?loga(1?x)?0. 综合(1)(2)知loga(1?x)?loga(1?x). 分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法. 因为 loga(1?x)?loga(1?x) ?lg(1?x)lg(1?x) ?lgalga1?lg(1?x)?lg(1?x)? lga1??lg(1?x)?lg(1?x)? lga?1lg(1?x2)?0, lga???所以loga(1
能力培优 不等式及不等式组
(一)不等式概念和性质错解例析
初学不等式,由于对概念及性质理解不够深刻,有些同学常出现一些错误,现举例分析,望能引以为戒
一、理解概念不透致错
例1、下列给出四个式子,
①x>2 ②a≠0 ③5<3 ④a≥b 其中是不等式的是( )
A、①④ B、①②④ C、①③④ D、①②③④
错解、选A
分析、不等式是指形式上用“<”、“>”、“≤”、“≥”、“≠”连接的式子,不受其是否成立的影响,5<3是不等式,只不过这个不等式不成立,另外a≠0也是不等式,因为“≠”也是不等号, 正解、选D
二、符号意义不清致错 例2、下列不等式
①2a>a ②a2+1>0 ③8≥6 ④x2≥0 一定成立的是( )
A、②④ B、② C、①②④ D、②③④
错解、选A
分析、导致本题错误的原因是对“≥”理解不正确,“≥”的意义是“>”或“=”,有选择功能,二者成立之一即可,事实上也只能二者取一,不等号两边的量不会既“>”又“=”,所以,对8≥6的理解应是“8大于6”,对x2≥0的理解应是,“当x=0时,x2=0;当x≠0时,x2>0” 正解、选D
例3、不等式x>-2的解集在数轴上表示正确的一项是( )
A B C
D
错解,选A
分析、对不等式的解集在数轴上的表示方法不清出错,在数轴上表示不等式的解集时,实心
初二数学备课组
一元一次不等式及不等式组培优
一元一次不等式及不等式组培优 一、一元一次不等式和函数
1.一次函数y=kx+b(k,b是常数,k?0)的图象如图所示,则不等式kx+b>0的解集是 ;
不等式kx+b<2的解集是 ; 当x<0时,y的取值范围是 ;
当x>-2时,y的取值范围是 .
2.直线l1:y?k1x?b与直线l2:y?k2x在同一平面直角坐标系中的图象如图所示,则关
y 于x的不等式k2x?k1x?b的解集为 .
3.一次函数y=5x-2m与与y=3x-6m+1交于第四象限,m的范围___________.
3 -1.5 o x
4.已知2x+y=5,当x满足条件 时,﹣1≤y<3.
5.如图,直线y=kx+b过A(﹣1,2),B(﹣2,0)两点,则0≤kx+b<4的解集为 .
6.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解是 .
二、二元一次方程组和不等式 1.已知方程组
的解为负整数,求整数a的值.
2.已知方程组值.
3.已知方程组
(1)求m的取值范围; (2)化简:|
第2讲不等式与不等式组
中考专题复习
第2讲 不等式与不等式组
一级训练
1.(2012年广东广州)已知a>b,c为任意实数,则下列不等式中总是成立的是( ) A.a+c<b+c B.a-c>b-c C.ac<bc D.ac>bc 2.(2012年四川攀枝花)下列说法中,错误的是( )
A.不等式x<2的正整数解中有一个 B.-2是不等式2x-1<1的一个解 C.不等式-3x>9的解集是x>-3 D.不等式x<10的整数解有无数个
3.(2012年贵州六盘水)已知不等式x-1≥0,此不等式的解集在数轴上表示为(
)
4.(2012年湖北荆州)已知点M(1-2m,m-1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是(
)
2x-1≥x+1,
5.(2012年山东滨州)不等式 的解集是( )
x+8≤4x-1
A.x≥3 B.x≥2 C.2≤x≤3 D.空集
x-1≥0,
6.(2012年湖北咸宁)不等式组 的解集在数轴上表示为(
)
4-2x>0
7.(2012年湖南益阳)如图2-2-2,数轴上表示的是下列哪个不等式组的解集(
)
图2-2-2
x≥-5, x>-5, x<5, x<5, A. B. C. D. x>-3
不等式证明
第四章 微积分中值定理与证明 4.1 微分中值定理与证明
一 基本结论
1.零点定理:若f(x)在[a,b]连续,f(a)f(b)?0,则???(a,b),使得f(?)?0. 2.最值定理:若f(x)在[a,b]连续,则存在x1,x2使得f(x1)?m,f(x2)?M.其中
m,M分别是f(x)在[a,b]的最小值和最大值.
3.介值定理:设f(x)在[a,b]的最小值和最大值分别是m,M,对于?c?[m,M], 都存在???[a,b]使得f(?)?c.(或者:对于?c?(m,M),都存在???(a,b)使得
f(?)?c)
4.费玛定理:如果x0是极值点,且f(x)在x0可导, 则 f?(x0)?0.
5.罗尔定理:f(x)在[a,b]连续,在(a,b)可导,f(a)?f(b),则???(a,b)使得
f?(?)?0.
6.拉格朗日定理:f(x)在[a,b]连续,在(a,b)可导,,则???(a,b)使得
f(b)?f(a)?(b?a)f?(?).
) 7.柯西定理:f(x),g(x)在[a,b]连续,在(a,b)可导,且g?(x)?0,则???(a,b使得
f(b)?f(a)f?(?)?.
g(b)?g(a)g?(?)8.泰勒公
不等式知识
不等式知识
目录:
三道小题
(一)一些基础。。。
(二)不等式的一些直观解释。。。 (三)谈谈放缩法。。。 (四)杂谈 关于配方法。。。 (五)杂谈 差分代换。。。
(六)杂谈 谈谈切线法及其推广 (七)介绍几个重要的不等式①。。。 (八)介绍几个重要的不等式②。。。 (九)杂谈 再谈配方法。。。。
(十)关于函数实根分别和不等式解集问题。。。。。。。
(十一)谈谈齐次形式不等式的程序化处理①对称整理类。。。 (十二)谈谈齐次形式不等式的程序化处理②Schur拆分法。。。 (十三)细化赫尔德(H?lder)不等式&引入闵可夫斯基(Minkowski)不等式。。。。 (十四)幂平均函数及其他。。。。。。。 (十五)SOS定理。。。
(十六)凸函数理论及受控理论。。。
(十七)杂谈 克劳修斯(Clausius)不等式与热力学第二定律。。。。 (十八)关于机械化方法的历史。。。 (十九)多元函数极值的偏导方法。。。。 (二十)解析——几何与代数的桥梁 小测试 A(轮换不等式) 小测试 B(含参情况) 小测试 C(对称破缺)
出三道小题,作为你们的自我检测,如果做不上来,你你还需要多练习练习。如果可以,那我们继续看:
①对于实数 x , y
2007不等式
不错的不等式题目
2006
1、均值不等式的理解
1.如果正数a,b,c,d满足a b cd 4,那么( ) A.ab≤c d,且等号成立时a,b,c,d的取值唯一 B.ab≥c d,且等号成立时a,b,c,d的取值唯一 C.ab≤c d,且等号成立时a,b,c,d的取值不唯一 D.ab≥c d,且等号成立时a,b,c,d的取值不唯一 答案:A
2、均值不等式的应用
1.若x,y R+,且x 4y 1,则x y的最大值是 . 答案:
116
2.已知x 0,y 0,x,a,b,y成等差数列,x,c,d,y成等比数列,则最小值是( ) A.0 B.1
(a b)cd
2
的
C.2 D.4
3
是1 a和1 a的等比中项,则a 3b的最大值为( ) A.1
B.2
C.3
2aba 2b
5
D.4
的最大值为( )
4.若a是1 2b与1 2b的等比中项,则
15
B.
4
D.
2
答案:B
3、其他不等式性质
1.设a,b是非零实数,若a b,则下列不等式成立的是( ) A.a b B.ab答案:C
4、解复杂不等式
1.解不等式(3x 1 1)(sinx 2) 0.
解:因为对任意x R,sinx 2 0,所以原不等式等价于3
不等式总结
一、高中数列基本公式:
1、一般数列的通项an与前n项和Sn的关系:an= 2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。 3、等差数列的前n项和公式:Sn=
Sn=
Sn=
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
n-1n-k
4、等比数列的通项公式: an= a1 q an= ak q (其中a1为首项、ak为已知的第k项,an≠0)
5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时,Sn= Sn=
三、高中数学中有关等差、等比数列的结论 1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。
2、等差数列{an}中,若m+n=p+q,则3、等比数列{an}中,若m+n=p+q,则
4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{an}与{b
不等式第二讲--一元二次不等式
不等式第二讲:一元二次不等式
一、一元二次不等式的解法
判别式??b?4ac 方程2??0 有两个不等实根 ??0 有两个相等实根 ??0 无实根 f(x)?ax2?bx?c?0 二次函数 y y y y?ax2?bx?c(a?0) 的图象 不等式O x1 x2 x O x1?x2x O x ax?bx?c?0(a?0) 的解集 不等式ax?bx?c?0 22?x|x?x1或x?x2? ?b?xx???? 2a??R (a?0)的解集 二、总结规律: ?x|x1?x?x2? ? ? 1、方程f(x)?0的实根是函数y?f(x)的图像与x轴的交点,也是函数y?f(x)的零点。 2、方程f(x)?0的根就是不等式解集的端点,不等式解集的端点就是方程f(x)?0的根。 3、不等式大于0的解集就是方程的根之外,小于0就是方程的两根之间;(大于取两根之外,小于取两根之间)(开口向上,即二次系数大于0)
?a?04、①不等式ax?bx?c?0恒成立的条件是?;
??0?2②不等式ax?bx?c?0恒成立的条件是?2?a?0
???05、如果函数y?f(x)在区间?a,b?上的图像是连续不断的一条曲线,并且有
f(a)?f(b)?0,那么函数y
利用排序不等式证明AM-GM不等式
自己原创的。
河南开封市高级中学jason_1108@
利用排序不等式证明AM-GM不等式AM-GM不等式若a1,a2, ,an>0,则
a1+a2+ +an≥n
等号当且仅当a1=a2= =an时成立a1a2 an
证明:令G=a1a2 an,则原不等式等价于
a1+a2+ +an≥nG
构造数列
A=
B= aaaaa a,, ,2GGGnGG2Gn,, ,a1a1a2a1a2 an
显然,两组数列中的元素有着一一对应的关系,即A中第K大的元素在B中所对应的元素是第K小的元素。所以,A、B两组数列中的元素对应相乘再相加所得结果是两组数列的反序和,即为n。
另一方面,A、B两组数列错位相乘为两组数列的乱序和,即乱序和是a1+a2+ +an。G
由排序不等式,乱序和大于等于逆序和,即
a1+a2+ +an≥nG
原不等式得证。