三角形概念的内涵和外延
“三角形概念的内涵和外延”相关的资料有哪些?“三角形概念的内涵和外延”相关的范文有哪些?怎么写?下面是小编为您精心整理的“三角形概念的内涵和外延”相关范文大全或资料大全,欢迎大家分享。
《三角形》部分概念复习
《三角形》部分概念复习
1.三角形的基本要素及基本性质定理
(1)基本属性:三角形有________个顶点、________个角、________条边.
(2)三角形边与边的关系:三角形中_____________大于第三边;三角形中____________小于第三边;
这两个定理都是根据_________公理(两点之间______________最短)以及__________性质推出来的; 直角三角形中,斜边_______(填大于或小于)直角边.这是根据________________公理推出来的.
根据三角形三边关系定理可以解决下面一类习题:
给你三条线段,判断它们能否组成三角形的最简单方法: _________________________________. 练习.1.以下列各组线段为边长,能组成三角形的是( )
A.1cm,2cm,4 cm B.8 crn,6cm,4cm C.12 cm,5 cm,6 cm D.2 cm,3 cm ,6 cm
2.等腰三角形的两边长分别为7cm和10 cm,则此三角形的周长是____________.(注意分类讨论) 3.等腰三角形的两边长分别为5 cm和10 cm,则
三角形、等腰三角形以及全等三角形的证明
儒洋教育学科教师辅导讲义
学员姓名: 年 级: 课时数: 辅导科目: 学科教师: 课 题 授课时间: 教学目标 重点、难点 考点及考试要求 教学内容 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段:
(1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质
(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180°
(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。
4. 补充性质:在?ABC中,D是BC边上任意一点,E是AD上任意一点,则三角形、等腰三角形以及全等三角形的证明 备课时间: S?ABE?S?CDE?S
初中数学三角形(二)特殊三角形
三角形(二)——特殊三角形
【等腰三角形】
1.有两条边相等的三角形是等腰三角形,等腰三角形是轴对称图形。 2.等腰三角形的两个底角相等(简写成“等边对等角”)。
3.等腰三角形顶角的平分线平分底边并且垂直于底边。(常称为“三线合一”)。 4.如果一个三角形有两个内角相等,则它是等腰三角形。
姓 名: 【典型例题】
例1.已知?ABC中,那么?ABC一定是( ) ?B与?C的平分线的交点P恰好在BC边的高AD上, (A)直角三角形 (B)等边三角形 (C)等腰三角形 (D)等腰直角三角形
第12届(2001年)初二培训
例2.如图2,在?ABC中,AB=AC,∠A=36°,BD,CE分别平分∠ABC和∠ACB,它们相交于F点,是图中等腰三角形的个数是( )
第14届(2003年)初二培训
图2
例3.等腰三角形的一条腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( )。
图1
(A)30° (B)30°或150° (C)120°或150° (D)30°或120°或150°
第10届(1999年)初二第
三角形的整理和复习
《三角形》的整理和复习
教学内容:义务教育课程标准实验教科书人教版四年级下册第五单元《三角形》的整理和复习。
教学目标:
1、学生进一步加深认识三角形的基本特征,掌握三角形的内角和,理解三角形不同的分类和各种三角形之间的关系,构建三角形的知识结构。
2、让学生经历建构三角形知识体系的过程,理解知识之间的内在联系,培养学生简单的概括归纳能力。
3、培养学生自主探索,合作交流,分析解决实际问题能力。
4、学生获得积极的成功的情感体验,产生数学学习的兴趣,增强学好数学的信心。 教学重难点:学生进一步理解和掌握三角形不同的分类和各种三角形之间的关系,建构三角形的知识体系。
教学准备:多媒体课件、卡片 教学过程:
(一) 创设情境,揭示课题 课件:猜猜我是谁?
(1)我有四条边,并且对边相符,四个角都是直角(长方形)
(2)我是由三条线段围成的,我有三条边、三个角、三个顶点、三条高(三角形) 这节课我们就来整理和复习第五单元《三角形》。
师:首先向大家介绍多边形王国的一位老朋友。今天将由它带领我们遨游多边形王国。如果你们能正确回答出它们的问题,就能赢得多边形王国的入场券,你们想不想得到多边形王国的入场券?
那我们如果能正确回答三角形的问题,就能获得多边
三角形的内角和练习
三角形的内角和练习
三角形的内角和练习
【例题分析】
11
∠B=∠C,请你判断三角形的形状。 23
分析:三角形的形状按边分和按角分两类,本题由于不可能按边分,因此只有计算各角的度数,按角来确定形状,由于在该题中∠C是最大的角,因此只需求出∠C的度数即可判断三角形的形状。
例2. 如图,已知DF⊥AB于点F,且∠A=45°,∠D=30°,求∠ACB的度数。 A
B C D
例3. 如图,在△ABC中,∠1=∠2,∠3=∠4,∠BAC=54°,求∠DAC的度数。
1
B D C
例4. 已知在△ABC中,∠A=62°,BO、CO分别是∠ABC、∠ACB的平分线,且BO、CO相交于O,求∠BOC的度数。
A
B C
〖拓展与延伸〗
(1)已知△AB中C,BO、CO分别是∠ABC、∠ACB的平分线,且BO、CO相交于点O,试探索∠BOC与∠A之间是否有固定不变的数量关系。
A
B C
例1. 在△ABC中,已知∠A=
三角形的内角和练习
(2)已知BO、CO分别是△ABC的∠ABC、∠ACB的外角角平分线,BO、CO相交于O,试探索∠B
三角形的分类
篇一:《三角形的分类》习题
《三角形的分类》习题
一、下面的说法,对的打“√”,错的打“×”。
1.有一个是锐角的三角形是锐角三角形。( )
2.直角三角形只有两个锐角。( )
3.如果一个三角形中最大的角小于90°,那么这个三角形一定是锐角三角形。( )
4.一个三角形不是锐角三角形,就是钝角三角形。( )
5.所有等边三角形都是等腰三角形而且都是锐角三角形。 ( )
6.由三条直线围成的图形叫做三角形。( )
7.在一个三角形中,不可能有两个或两个以上的直角。( )
8.在同一个三角形中,只能有一个角是钝角。( )
9.一个三角形中,至少有两个角是钝角。( )
10.两个角相等的三角形是等腰三角形。( )
11.等边三角形一定是锐角三角形。( )
12.三角形中最多有一个直角。( )
二、填空题。
1.三角形按角分类可分成( )三角形、( )三角形和( )三角形。
2.一个三角形中最大的角是锐角,这个三角形是( )三角形。
3.一个三角形中最大的角是120°,这个三角形是( )三角形。
4.你能给三角形分类吗:
三、选择。
1.三条边相等的三角形是( )三角形。
A.不等边B.等腰 C.等边
2.等腰三角形有( )条边相等。
A.1 B.2C.3
3.任何一个三角形至少有( )个锐角
三角形习题
三角形 综合习题
一、选择题
1.一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在 ( )
A.三角形内部 C.三角形外部
B.三角形的一边上 D.三角形的某个顶点上
2.下列长度的各组线段中,能组成三角形的是 ( ) A.4、5、6 C.5、7、12
B.6、8、15 D.3、9、13
3.在锐角三角形中,最大角α的取值范围是 ( ) A.0°<α<90° C.60°<α<180°
4.下列判断正确的是 ( )
A.有两边和其中一边的对角对应相等的两个三角形全等 B.有两边对应相等,且有一角为30°的两个等腰三角形全等 C.有一角和一条边对应相等的两个直角三角形全等 D.有两角和一边对应相等的两个三角形全等
5.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是( ) A.x<6 C.0<x<12
B.6<x<12 D.x>12
B.60°<α<90° D.60°≤α<90°
6.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A.则此三
角形 ( )
A.一定有一个内角为45° B.一定有一个内角为60° C.一定是直角三角形 D.一定是钝角三角形
7.三角
三角形的有关概念(提高)知识讲解
三角形的有关概念(提高)知识讲解
撰稿:孙景艳 责编:吴婷婷
【学习目标】
1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法. 2. 理解并会应用三角形三边间的关系.
3. 理解三角形的高、中线、角平分线的概念,学会它们的画法. 4. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.
【要点梳理】
要点一、三角形的定义
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
要点诠释:
(1)三角形的基本元素:
①三角形的边:即组成三角形的线段;
②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角; ③三角形的顶点:即相邻两边的公共端点. (2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”. (3)三角形的表示:三角形用符号“△”表示,顶点为A、B、C的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC的三边可以用大写字母AB、BC、AC来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示.
要点二、三角形的三边关系
定理:三角形任意两边之和大于第三边. 推论:三角形任意两边的之差小
三角形三边关系、三角形内角和定理练习题
三角形三边关系、三角形内角和定理
一、三角形边的性质
1画出下列三角形是高
EF
B
2、已知:如图△ABC中AG是BC中线,AB=5cm AC=3cm,则△ABG和△ACG的周长的差为多少?△ABG和△ACG的面积有何关系?
3、三角形的角平分线、中线、高线都是( )
A、直线 B、线段 C、射线 D、以上都不对
4、三角形三条高的交点一定在( )
A、三角形的内部 B、三角形的外部
C、顶点上 D、以上三种情况都有可能
5、直角三角形中高线的条数是( )
A、3 B、2 C、1 D、0
6、判断:
(1) 有理数可分为正数和负数。
(2) 有理数可分为正有理数、正分数、负有理数和负分数。
7、现有10cm的线段三条,15cm的线段一条,20cm的线段一条,将它们任意组合可以得到几种不同形状的三角形?
二、三角形三边的关系
1、1.指出下列每组线段能否组成三角形图形
(1)a=5,b=4,c=3 (2)a=7,b=2,c=4
(3)a=6,b=6,c=12 (4)a=5,b=5,c=6
2.已知等腰三角形的两边长分别为11cm和5cm,求它的周长。
3.已知等腰三角形的底边长为8cm,
三角形三边关系、三角形内角和定理练习题
三角形三边关系、三角形内角和定理
一、三角形边的性质
1画出下列三角形是高
EF
B
2、已知:如图△ABC中AG是BC中线,AB=5cm AC=3cm,则△ABG和△ACG的周长的差为多少?△ABG和△ACG的面积有何关系?
3、三角形的角平分线、中线、高线都是( )
A、直线 B、线段 C、射线 D、以上都不对
4、三角形三条高的交点一定在( )
A、三角形的内部 B、三角形的外部
C、顶点上 D、以上三种情况都有可能
5、直角三角形中高线的条数是( )
A、3 B、2 C、1 D、0
6、判断:
(1) 有理数可分为正数和负数。
(2) 有理数可分为正有理数、正分数、负有理数和负分数。
7、现有10cm的线段三条,15cm的线段一条,20cm的线段一条,将它们任意组合可以得到几种不同形状的三角形?
二、三角形三边的关系
1、1.指出下列每组线段能否组成三角形图形
(1)a=5,b=4,c=3 (2)a=7,b=2,c=4
(3)a=6,b=6,c=12 (4)a=5,b=5,c=6
2.已知等腰三角形的两边长分别为11cm和5cm,求它的周长。
3.已知等腰三角形的底边长为8cm,