小学数学定义定理公式大全
“小学数学定义定理公式大全”相关的资料有哪些?“小学数学定义定理公式大全”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学数学定义定理公式大全”相关范文大全或资料大全,欢迎大家分享。
小学数学算术定义定理公式
小学数学算术定义定理公式
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通
初中数学定义、定理、公理、公式汇编(中考备考宝典)
初中数学定义、定理、公理、公式汇编
直线、线段、射线
1. 过两点有且只有一条直线. (简:两点决定一条直线) 2.两点之间线段最短 3.同角或等角的补角相等. 同角或等角的余角相等.
4. 过一点有且只有一条直线和已知直线垂直 5. 直线外一点与直线上各点连接的所有线段中,垂线段最短. (简:垂线段最短) 平行线的判断
1.平行公理 经过直线外一点,有且只有一条直线与这条直线平行.
2.如果两条直线都和第三条直线平行,这两条直线也互相平行(简:平行于同一直线的两直线平行)
3.同位角相等,两直线平行. 4.内错角相等,两直线平行. 5.同旁内角互补,两直线平行. 平行线的性质
1.两直线平行,同位角相等. 2.两直线平行,内错角相等. 3.两直线平行,同旁内角互补. 三角形三边的关系
1.三角形两边的和大于第三边、三角形两边的差小于第三边. 三角形角的关系
1. 三角形内角和定理 三角形三个内角的和等于180°.
2.直角三角形的两个锐角互余.
3.三角形的一个外角等于和它不相邻的两个内角的和.
4. 三角形的一个外角大于任何一个和它不相邻的内角.
全等三角形的性质、判定
1.全等三角形的对应边、对应角相等.
2.边角
初中数学定义、定理、公理、公式汇编(中考备考宝典)
初中数学定义、定理、公理、公式汇编
直线、线段、射线
1. 过两点有且只有一条直线. (简:两点决定一条直线) 2.两点之间线段最短 3.同角或等角的补角相等. 同角或等角的余角相等.
4. 过一点有且只有一条直线和已知直线垂直 5. 直线外一点与直线上各点连接的所有线段中,垂线段最短. (简:垂线段最短) 平行线的判断
1.平行公理 经过直线外一点,有且只有一条直线与这条直线平行.
2.如果两条直线都和第三条直线平行,这两条直线也互相平行(简:平行于同一直线的两直线平行)
3.同位角相等,两直线平行. 4.内错角相等,两直线平行. 5.同旁内角互补,两直线平行. 平行线的性质
1.两直线平行,同位角相等. 2.两直线平行,内错角相等. 3.两直线平行,同旁内角互补. 三角形三边的关系
1.三角形两边的和大于第三边、三角形两边的差小于第三边. 三角形角的关系
1. 三角形内角和定理 三角形三个内角的和等于180°.
2.直角三角形的两个锐角互余.
3.三角形的一个外角等于和它不相邻的两个内角的和.
4. 三角形的一个外角大于任何一个和它不相邻的内角.
全等三角形的性质、判定
1.全等三角形的对应边、对应角相等.
2.边角
小学数学公式大全
小学数学公式大全
小学数学公式大全
一、小学数学几何形体周长 面积 体积计算公式
长方形的周长=(长+宽)×2 C=(a+b)×2
正方形的周长=边长×4 C=4a
长方形的面积=长×宽 S=ab
正方形的面积=边长×边长 S=a.a= a
三角形的面积=底×高÷2 S=ah÷2
平行四边形的面积=底×高 S=ah
梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
直径=半径×2 d=2r 半径=直径÷2 r= d÷2
圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
圆的面积=圆周率×半径×半径
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h
高中数学公式定理记忆口诀大全
中小学1对1全托管辅导权威教育机
构!
金博教育官网:7259d4976bd97f192279e9d8 ----------------------------------------------咨询热线:
400-8383-881 金博教育分校:中关村校区/西直门校区/公主坟校区/东直门校区/宣武门校区/劲松校区/望京校区 高中数学公式定理记忆口诀大全
《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X 是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形
小学数学计算公式大全
小学数学计算公式大全
1、正方形 (C:周长 S:面积 a:边长) 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2、正方体 (V:体积 a:棱长 ) 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3、长方形( C:周长 S:面积 a:边长 ) 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高) (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5、三角形 (s:面积 a:底 h:高) 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6、平行四边形 (s:面积 a
小学数学公式大全(完整)
一、小学数学几何形体周长面积体积计算公式
长方形的周长=(长+宽)×2 C=(a+b)×2
正方形的周长=边长×4 C=4a
长方形的面积=长×宽S=ab
正方形的面积=边长×边长S=a.a=a
三角形的面积=底×高÷2 S=ah÷2
平行四边形的面积=底×高S=ah
梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
直径=半径×2 d=2r半径=直径÷2 r=d÷2
圆的周长=圆周率×直径=圆周率×半径×2 c=πd=2πr
圆的面积=圆周率×半径×半径
三角形的面积=底×高÷2.公式S=a×h÷2
正方形的面积=边长×边长公式S=a×a
长方形的面积=长×宽公式S=a×b
平行四边形的面积=底×高公式S=a×h
梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2
内角和:三角形的内角和=180度.
长方体的体积=长×宽×高公式:V=abh
长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=aaa
圆的周长=直径×π公式:L=πd=2πr
圆的面积=半径×半径×π公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高.公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的
小学数学公式大全(人教版)
小升初必备
小学数学公式大全(人教版)
一、小学数学几何形体周长 面积 体积计算公式
长方形的周长=(长+宽)×2 C=(a+b)×2
正方形的周长=边长×4 C=4a
长方形的面积=长×宽 S=ab
正方形的面积=边长×边长 S=a.a= a
三角形的面积=底×高÷2 S=ah÷2
平行四边形的面积=底×高 S=ah
梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
直径=半径×2 d=2r 半径=直径÷2 r= d÷2
圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
圆的面积=圆周率×半径×半径
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S=
离散数学定义定理(上)
离散数学定义定理
1.3.1命题演算的合式公式规定为: (1)单个命题变元本身是一个合式公式。 (2)如果A是合式公式,那么┐A是合式公式。
(3)如果A和B是合式公式,那么(A∨B)、(A∧B)、(A→B)、(A?B)、都是合式公式。 (4)当且仅当有限次地应用(1)(2)(3)所得到的包含命题变元,连接词和圆括号的符号串是合式公式。
1.3.2 设Ai是公式A的一部分,且Ai是一个合式公式,称Ai是A的子公式。
1.3.3 设P为一命题公式,P1,P2,……,Pn为出现在P中的所有命题变元,对P1,P2,……,Pn指定一组真值称为对P的一种指派。若指定的一种指派,使P的值为真,则称这组指派为成真指派。若指定的一种指派,使P的值为假,则称这种指派为成假指派。 含n个命题变元的命题公式,共有2n个指派。
1.3.4 给定两个命题公式A和B,设P1,P2,……,Pn为所有出现于A和B中的原子变元,若给P1,P2,……,Pn任一组真值指派,A和B的真值都相同,称A和B是等价的,记做A <=>B。
1.3.5 设A为一命题公式,若A在它的各种指派情况下,其取值均为真,则称A为重言式或永真式。 1.3.6 设A为一命题公式,若A在它的各种指派情况下
离散数学定义定理(上)
离散数学定义定理
1.3.1命题演算的合式公式规定为: (1)单个命题变元本身是一个合式公式。 (2)如果A是合式公式,那么┐A是合式公式。
(3)如果A和B是合式公式,那么(A∨B)、(A∧B)、(A→B)、(A?B)、都是合式公式。 (4)当且仅当有限次地应用(1)(2)(3)所得到的包含命题变元,连接词和圆括号的符号串是合式公式。
1.3.2 设Ai是公式A的一部分,且Ai是一个合式公式,称Ai是A的子公式。
1.3.3 设P为一命题公式,P1,P2,……,Pn为出现在P中的所有命题变元,对P1,P2,……,Pn指定一组真值称为对P的一种指派。若指定的一种指派,使P的值为真,则称这组指派为成真指派。若指定的一种指派,使P的值为假,则称这种指派为成假指派。 含n个命题变元的命题公式,共有2n个指派。
1.3.4 给定两个命题公式A和B,设P1,P2,……,Pn为所有出现于A和B中的原子变元,若给P1,P2,……,Pn任一组真值指派,A和B的真值都相同,称A和B是等价的,记做A <=>B。
1.3.5 设A为一命题公式,若A在它的各种指派情况下,其取值均为真,则称A为重言式或永真式。 1.3.6 设A为一命题公式,若A在它的各种指派情况下