毕达哥拉斯学派

“毕达哥拉斯学派”相关的资料有哪些?“毕达哥拉斯学派”相关的范文有哪些?怎么写?下面是小编为您精心整理的“毕达哥拉斯学派”相关范文大全或资料大全,欢迎大家分享。

毕达哥拉斯学派

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

篇一:毕达哥拉斯学派

毕达哥拉斯学派

毕达哥拉斯学派亦称“南意大利学派”

,是一个集政治、学术、宗教三位于一体的组织。古希腊哲学家毕达哥拉 毕达哥拉斯学派斯所创立。产生于公元前6世纪末,公元前5世纪被迫解散,其成员大多是数学家、天文学家、音乐家。它是西方美学史上最早探讨美的本质的学派。

发展起源:

毕达哥拉斯曾旅居埃及,后来又到各地漫游,很可能还曾去过印度。在他的游历生活中,他受到当地文化的影响,了解到许多神秘的宗教仪式,还熟悉了它们与数的知识及几何规则之间的联系。旅行结束后,他才返回家乡撒摩斯岛。由于政治的原因。他后来迁往位于南意大利的希腊港口克罗内居住。在这里创办了一个研究哲学、数学和自然科学的团体,后来便发展成为一个有秘密仪式和严格戒律的宗教性学派组织。毕氏学派认为,对几何形式和数字关系的沉思能达到精神上的解脱,而音乐却被看作是净化灵魂从而达到解脱的手段。 发展过程:

有许多关于毕达哥拉斯的神奇传说。如,他在同一时间会出现在两个不同的地方,被不同的人看到;还有传说,当他过河时,河神站起身来向他问候:“你好啊,毕达哥拉斯”;还有人说,他的一条腿肚子是金子做的。毕达哥拉斯相信人的灵魂可以转生,有人为了嘲弄他的宗教教义而传言,一次当他看到一只狗正遭人打时

毕达哥拉斯

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

篇一:简述毕达哥拉斯定理的起源

几何学中,有着无数定理,毕达哥拉斯定理是其中最诱人的一个。毕达哥拉斯定理的历史最悠久、证明方法最多、应用最广泛,它是人类科学发现中的一条基本定理,对科技进步起了不可估量的作用。中世纪德国数学家、天文学家开普勒称赞说:“几何学中有两件瑰宝,一是毕达哥拉斯定理,一是黄金分割律。” 在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。数学公式中常写作a2+b2=c2

“勾三股四弦五”是我们现在耳熟能详的“勾股定理”中的一个特例,它早在西汉的数学著作《周髀算经》中就已经出现,遗憾的是我们的祖先没有从这一特例中发现普遍意义,而拱手将这一定理的发现权及冠名权让给了古希腊著名数学家和哲学家毕达哥拉斯。他第一个用演绎法证明了直角三角形斜边平方等于两直角边平方之和。因而这条定理在西方以他的名字命名,被称为“毕达哥拉斯定理”。

大约在公元前572年,毕达哥拉斯出生在爱琴海的萨摩斯岛。自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学,后来因对东方的向往,游历了巴比伦、印度和埃及,吸收了阿拉伯文明和印度文明,大约在公元前550年才返回

毕达哥拉斯定理的证明

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

毕达哥拉斯定理的证明

侯昕彤 南京大学匡亚明学院

摘 要:

欧几里德的毕达哥拉斯定理证明。包括其中涉及的4条定义,5条公设,4条公理,25个命题证明,以及主证明(欧几里德《几何原本》第一卷命题47)。

关 键 词:毕达哥拉斯定理 几何原本 欧几里德

毕达哥拉斯定理:一个直角三角形斜边的平方,等于其两个直角边的平方和。

欲证明该定理,首先给出下列定义,公设以及公理: ? 定义:

【定义1】当一条直线和另一条直横的直线交成的邻角彼此相等时,这些角的每一个被叫做直角。

【定义2】圆是由一条线包围成的平面图形,其内有一点与这条线上的点连接成的所有线段都相等。

【定义3】在四边形中,四边相等且四个角是直角的,叫做正方形。

【定义4】平行直线是在同一平面内的直线,向两个方向无限延长,在不论那个方向它们都不相交。 ? 公设:

【共设1】由任意一点到另外任意一点可以画直线. 【共设2】一条有限直线可以继续延长.

【共设3】以任意点为心及任意的距离可以画圆。 【共设4】凡直角都彼此相等。

【共设5】同平面内一条直线和另外两条直线相交,若在某一侧的两个内角的和小于二自角的和,则这二直线经无限延长后在这一侧相交 ? 公理:

【公理1】等于同量的量彼此相等。 【

毕达哥拉斯定理的证明

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

毕达哥拉斯定理的证明

侯昕彤 南京大学匡亚明学院

摘 要:

欧几里德的毕达哥拉斯定理证明。包括其中涉及的4条定义,5条公设,4条公理,25个命题证明,以及主证明(欧几里德《几何原本》第一卷命题47)。

关 键 词:毕达哥拉斯定理 几何原本 欧几里德

毕达哥拉斯定理:一个直角三角形斜边的平方,等于其两个直角边的平方和。

欲证明该定理,首先给出下列定义,公设以及公理: ? 定义:

【定义1】当一条直线和另一条直横的直线交成的邻角彼此相等时,这些角的每一个被叫做直角。

【定义2】圆是由一条线包围成的平面图形,其内有一点与这条线上的点连接成的所有线段都相等。

【定义3】在四边形中,四边相等且四个角是直角的,叫做正方形。

【定义4】平行直线是在同一平面内的直线,向两个方向无限延长,在不论那个方向它们都不相交。 ? 公设:

【共设1】由任意一点到另外任意一点可以画直线. 【共设2】一条有限直线可以继续延长.

【共设3】以任意点为心及任意的距离可以画圆。 【共设4】凡直角都彼此相等。

【共设5】同平面内一条直线和另外两条直线相交,若在某一侧的两个内角的和小于二自角的和,则这二直线经无限延长后在这一侧相交 ? 公理:

【公理1】等于同量的量彼此相等。 【

关于毕达哥拉斯定理证明的论文

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

大学选修课论文有这个的参考下吧

关于毕达哥拉斯定理的证明

专业:××××× 姓名:×× 指导老师:××

摘要:对于几何原本中毕达哥拉斯定理的证明过程,欧几里得以定义,公设,公理的方

式进行推理,现将所有涉及毕达哥拉斯定理的证明命题提出。

关键词:毕达哥拉斯定理,定义,公设,公理。

正文:

定义:1. 点是没有部分的东西

2.线只有长度而没有宽带 3.一线的两端是点

4.直线是它上面的点一样地平放着的线 5.面只有长度和宽带 6.面的边缘是线

7.平面是它上面的线一样地平放着 8. 平面角是在一平面内但不在一条直线上的两条相交线相互的倾斜度. 9. 当包含角的两条线都是直线时,这个角叫做直线角. 10. 当一条直线和另一条直线交成邻角彼此相等时,这些角每一个被叫

做直角,而且称这一条直线垂直于另一条直线。

11. 大于直角的角称为钝角。 12. 小于直角的角称为锐角 13. 边界是物体的边缘

14. 图形是一个边界或者几个边界所围成的

15. 圆:由一条线包围着的平面图形,其内有一点与这条线上任何一个

点所连成的线段都相等。

论毕达哥拉斯定理和费尔马大定理的美妙证明

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

毕达哥拉斯公式和柏拉图(Plato) 公式都是基础性的勾股数组的通解公式,费尔马大定理是一个正确的定理。

论毕达哥拉斯定理和费尔马大定理的美妙证明

沙寅岳

( 浙江大学 宁波理工学院 东灵工程技术中心 )

(中国浙江省宁波市鄞州区横溪镇桃园新村路下9号105室,邮编:315131)

E-mail: shayinyue@http://www.77cn.com.cn 摘 要: 本文采用公式展开和消项的方法,轻而易举地给出了勾股定理(毕达哥拉斯定理)的通解公式,进而给出了二组勾股定理的基本数组,这些数组在勾股定理中具有基础性的地位。 关键词:勾股定理,毕达哥拉斯定理,费尔马大定理,互质数,正整数解。

中图分类号:O156.1

1.勾股定理的研究历史

对于如何求得勾股方程x2 y2 z2的正整数解(即勾股数组),古今中外的数学家们进行了大量探索并给出了各具特色的数学公式.它们分别是:

2毕达哥拉斯公式:x 2n 1,y 2n2 2n,z 2n 2n 1(其中n 1,n N).

2柏拉图(Plato) 公式:x 2m,y m2 1,z m 1(其中m 2,m N).

欧几里得(Euclid) 公式:x

并且m,n为完全平方数). mn ,y 12(m n), z 12(m

论毕达哥拉斯定理和费尔马大定理的美妙证明

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

毕达哥拉斯公式和柏拉图(Plato) 公式都是基础性的勾股数组的通解公式,费尔马大定理是一个正确的定理。

论毕达哥拉斯定理和费尔马大定理的美妙证明

沙寅岳

( 浙江大学 宁波理工学院 东灵工程技术中心 )

(中国浙江省宁波市鄞州区横溪镇桃园新村路下9号105室,邮编:315131)

E-mail: shayinyue@http://www.77cn.com.cn 摘 要: 本文采用公式展开和消项的方法,轻而易举地给出了勾股定理(毕达哥拉斯定理)的通解公式,进而给出了二组勾股定理的基本数组,这些数组在勾股定理中具有基础性的地位。 关键词:勾股定理,毕达哥拉斯定理,费尔马大定理,互质数,正整数解。

中图分类号:O156.1

1.勾股定理的研究历史

对于如何求得勾股方程x2 y2 z2的正整数解(即勾股数组),古今中外的数学家们进行了大量探索并给出了各具特色的数学公式.它们分别是:

2毕达哥拉斯公式:x 2n 1,y 2n2 2n,z 2n 2n 1(其中n 1,n N).

2柏拉图(Plato) 公式:x 2m,y m2 1,z m 1(其中m 2,m N).

欧几里得(Euclid) 公式:x

并且m,n为完全平方数). mn ,y 12(m n), z 12(m

理性预期学派或新古典宏观经济学派的菲利普斯曲线

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

理性预期或新宏观古典的菲里普斯曲线介绍

理性预期学派或新古典宏观经济学派的菲利普斯曲线

1.新古典宏观经济学的三大假说

(1)理性预期假说

A.适应性预期的缺陷

适应性预期完全根据某种变量的过去值来预期其未来值。当预期有错误时,私人部门虽然会调整预期,但调整的速度比较缓慢,不是一步到位的。因此,只有在该变量的未来值不变时,这种预期才有可能是大致准确的。只要变量的未来值不断发生变化,适应性预期会犯系统性的误差。不必说短期的预期不正确,就是在长期,某种变量的预期值与其实际值也不一致。例如,如果央行不断地增加货币量,私人部门的预期通胀率就总是小于实际通胀率,使得短期菲利普斯曲线和长期菲利普斯曲线都向右下方倾斜。这样货币主义与凯恩斯主义几乎就没有多大的区别了。认识到现代货币主义在预期问题上的这一失误后,一些激进的货币主义者开始利用理性预期更猛烈地批判凯恩斯主义。

B.理性预期的含义

理性预期是指经济主体为了谋取最大利益,会设法利用一切可以公开获得的过去的和现在的各种信息,对有关经济变量的变动趋势做出尽可能准确的如同相关经济理论的预言一样的预期。理性预期概念最早是由约翰·穆思(John F. Muth)在1961年7月号的《经济计量学》杂志上发表的《理性预

重庆工商大学派斯学院毕业论文开题报告范文模板

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

重庆工商大学派斯学院毕业论文开题报告范文模板

重庆工商大学派斯学院毕业论文题目 班级: 6084

专业:重庆工商大学派斯学院 学号:X 50292 姓名:杜某某

模板简洁大气,更改替换容易,PPT初学者也能使用!

重庆工商大学派斯学院毕业论文开题报告范文模板

报告内容选题意义及依据

相关国内外研究现状论文研究主要内容 课题预期目标和成果 进度安排

重庆工商大学派斯学院毕业论文开题报告范文模板

选题意义及依据1 选题意义

简要概述课题有什么价值,可以应用到什么领域。如果是理论研究, 应重点说明理论价值。

2

选题意义依据

① 有理论研究, 取得一定研究成果(学术论文支持), 并将其成果应用于 工程实践(即工程工作量)。 ② 无理论研究, 但有较大的工程工作量。

重庆工商大学派斯学院毕业论文开题报告范文模板

课题相关国内外研究现状 通过阅读国内外相关技术资料和论文, 充分了解所选题目相 关领域国内外发展状况, 找到题目的立足点。必须陈述课题 的现状,但是要概括。

如果论文为一般的应用系统开发,则必须调研现有系统,并 说明这些系统的特点、优缺点,以及指出本课题与这些已有 系统的区别与联系。

重庆工商大学派斯学院毕业论文开题报告范文模板

论文研究主要内容1研究内容1

1

芝加哥学派vs奥地利学派汇总

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

加哥学派对奥地利学派

??4fun?? 2011-07-01? 3126

简介

芝加哥学派和奥地利学派都是自由主义的信奉者,但两者在方法论、关于繁荣和萧条的解释以及法律都存在差别。

People often ask me, \are the Austrians different from the Chicago School economists? Aren't you all free-market guys who oppose big-government Keynesians?\

人们经常问我,为什么奥地利学派和芝加哥学派的经济学者差别这么大呢?你们不都是反对大政府凯恩斯主义的自由市场派吗?

In the present article I'll outline some of the main differences. Although it's true that Austrians agree with Chicago economists on many policy issues, nevertheless their approach to economic science can be quite different